Домой / Дети / Механические колебания и волны краткая теория. Колебания и волны Механические колебания и волны звук все формулы

Механические колебания и волны краткая теория. Колебания и волны Механические колебания и волны звук все формулы

Основные положения :

Колебательное движение – движение, точно или приблизительно повторяющееся через одинаковые промежутки времени.

Колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса, являются гармоническими.

Периодом колебаний Т называется наименьший промежуток времени, по истечение которого повторяются значения всех величин, характеризующих колебательное движение. За этот промежуток времени совершается одно полное колебание.

Частотой периодических колебаний называется число полных колебаний, которые совершаются за единицу времени. .

Циклической (круговой) частотой колебаний называется число полных колебаний, которые совершаются за 2π единиц времени.

Гармоническими колебаниями называются колебания, при которых колеблющаяся величина х изменяется с течением времени по закону:

где А, ω, φ 0 – постоянные величины.

А > 0 – величина, равная наибольшему абсолютному значению колеблющейся величины х и называется амплитудой колебаний.

Выражение определяет значение х в данный момент времени и называется фазой колебаний.

В момент начала отсчета времени (t = 0) фаза колебаний равна начальной фазе φ 0.

Математический маятник – это идеализированная система, представляющая собой материальную точку, подвешенную на тонкой, невесомой и нерастяжимой нити.

Период свободных колебаний математического маятника: .

Пружинный маятник – материальная точка, закрепленная на пружине и способная совершать колебания под действием силы упругости.

Период свободных колебаний пружинного маятника: .

Физический маятник – это твердое тело, способное вращаться вокруг горизонтальной оси под действием силы тяжести.

Период колебаний физического маятника: .

Теорема Фурье : любой реальный периодический сигнал можно представить в виде суммы гармонических колебаний с различными амплитудами и частотами. Эту сумму называют гармоническим спектром данного сигнала.

Вынужденными называют колебания, которые вызваны действием на систему внешних сил F(t), периодически изменяющихся с течением времени.

Сила F(t) называется возмущающей силой.

Затухающими колебаниями называются колебания, энергия которых уменьшается с течением времени, что связано с убылью механической энергии колеблющейся системы за счет действия сил трения и других сил сопротивления.

Если частота колебаний системы совпадает с частотой возмущающей силы, то резко возрастает амплитуда колебаний системы. Это явление называется резонансом.

Распространение колебаний в среде называется волновым процессом, или волной.

Волна называется поперечной , если частицы среды колеблются в направлении, перпендикулярном направлению распространения волны.


Волна называетсяпродольной , если колеблющиеся частицы движутся в направлении распространения волны. Продольные волны распространяются в любой среде (твердой, жидкой, газообразной).

Распространение поперечных волн возможно только в твердых телах. В газах и жидкостях, которые не обладают упругостью формы, распространение поперечных волн невозможно.

Длиной волны называется расстояние между ближайшими точками, колеблющимися в одинаковой фазе, т.е. расстояние, на которое распространяется волна за один период.

Скорость волны V – это скорость распространения колебаний в среде.

Период и частота волны – период и частота колебаний частиц среды.

Длина волны λ – расстояние, на которое распространяется волна за один период: .

Звук – упругая продольная волна, распространяющаяся от источника звука в среде.

Восприятие звуковых волн человеком зависит от частоты, слышимые звуки от 16 Гц до 20000Гц.

Звук в воздухе – это продольная волна.

Высота тона определяется частотой звуковых колебаний, громкость звука – его амплитудой.

Контрольные вопросы :

1. Какое движение называется гармоническим колебанием?

2. Дайте определения величин, характеризующих гармонические колебания.

3. Каков физический смысл имеет фаза колебаний?

4. Что называется математическим маятником? Каков его период?

5. Что называется физическим маятником?

6. Что такое резонанс?

7. Что называется волной? Дайте определение поперечной и продольной волны.

8. Что называется длиной волны?

9. Каков диапазон частот звуковых волн? Может ли звук распространяться в вакууме?

Выполните задания:

II семестр

Механические колебания и волны

Общая черта колебательных процессов – высокая степень повторяемости процесса.

Колебания подразделяются:

    по природе: механические, электромагнитные;

    по степени повторяемости: периодические, непериодические;

    по свойствам: гармонические, ангармонические;

    по способу возникновения: свободные, вынужденные.

Механические колебания

Колебательные системы

Колебания – физические процессы, которые происходят с определённой повторяемостью во времени.

Периодические колебания – колебания, при которых значения характерных параметров системы повторяются через равные промежутки времени.

Полное колебание – процесс, проходящие в системе за период.

Период – минимальный период времени, через который все параметры системы повторяются.

Частота – число полных колебаний, происходящих в единицу времени.

Циклическая частота – число полных колебаний за единиц времени.

Гармонические колебания – колебания, происходящие по закону изменения гармонических функций.

Линейные колебания – колебания, возникающие в линейных системах.

Линейная система – система, реакция которой линейно зависит от воздействия.

Свободные (собственные) колебания – колебания, которые происходят в отсутствие внешних воздействий на колебательную систему и возникают вследствие какого-либо начального отклонения этой системы из состояния её устойчивого равновесия под действием внутренних сил системы.

Вынужденные колебания – колебания, возникающие в какой-либо системе под влиянием переменного внешнего воздействия.

Равновесие в механических системах и возникновение колебаний

Условие равновесия точечного тела:
, протяжённого тела:
,
.

Характерным свойством колебательной системы является наличие возвращающей (квазиупругой) силы.

,
;
. Необходимое условие колебательной системы:
. Достаточность:
.

Свободные незатухающие колебания

Пружинный маятник:
,
, ,
, где
.

Математический маятник:
.
,
.
,
,
,
,
,
, где
.

Физический маятник:
,
,
,
,
,
,
, где
.

Приведённая длина физического маятника – длина математического маятника, период колебаний которого равен периоду колебаний физического маятника,
.

Центр качания – математическая точка, отстоящая от точки подвеса на приведённую длину и лежащая на маятнике.

Если физический и математический маятники с приведённой длиной колеблются около одной оси, то материальная точка математического и центр качания физического маятника движутся синхронно, если вначале их отклонили на одинаковый угол и одновременно отпустили.

Точка подвеса и центр качания обратимы (можно подвесить за любую из них, период колебаний будет одинаков).

Уравнение колебаний

Все системы описываются уравнением
, где
(пружинный),
(математический),
(физический).

Переменная колебаний – параметр, характеризующий отклонение системы от положения равновесия. (x ).

Решение уравнения колебаний.

Линейный гармонический осциллятор – любая колебательная система, в которой возникают малые линейные гармонические колебания.

Основные характеристики гармонических колебаний

Амплитуда – максимальное значение переменной колебания (максимальное отклонение системы от положения равновесия). Амплитуда всегда положительна.
,A – амплитуда.

Фаза – параметр, характеризующий относительное значения отклонения системы от положения равновесия (
).

Начальная фаза – значение фазы в начальный момент времени ().

Период:
, частота
,- циклическая частота.

Свойства гармонических колебаний:

    Частота и период гармонических колебаний определяются свойствами самой системы.

    Амплитуда и начальная фаза зависят от способа возбуждения колебаний.

    Период и частота не зависят от амплитуды.

Скорость и ускорение при колебаниях:

Пусть
. Тогда,
.

Начальные условие – задание смещение и скорости в начальный момент времени.


Задание начальных условий определяет амплитуду и начальную фазу.

Кинетическая и потенциальная энергия системы:

. Для пружинного маятника
- закон сохранения энергии при свободных незатухающих колебаниях.

.,.

Энергия и вычисление периода колебаний:



Представление колебаний с помощью векторных диаграмм и комплексных чисел.

Пусть, где
. Возьмём
,
. Тогда
, а уравнение
описывает движение проекций конца вектора по соответствующим осям. Пусть теперьxy – комплексная плоскость. Тогда .

Фазовая плоскость (пространство) – геометрический образ, представимый множеством состояний системы
или
.

Фазовая точка – точка фазовой плоскости, определяемая скоростью и координатой и соответствующая определённому состоянию системы.

Фазовая траектория – линия, которую описывает точка на фазовой плоскости при изменении состояния системы.

Фазовый портрет маятника – фазовая траектория маятника:
или
(
или ­
).

Фазовый портрет для гармонических колебаний:
.

Свободные затухающие колебания

Пружинный маятник: ., где - параметр (коэффициент) затухания,
.

Математический маятник:
.

Решение уравнения свободных затухающих колебаний:

Предположим, что
. Тогда
,
.
,. Отсюда. Обозначив
, получим:
- решение уравнения свободных затухающих колебаний.

Если трение мало
, то
.

Основные характеристики затухающих колебаний.

В
ремя релаксации – время, в течение которого значение параметра убывает вe раз:

.

Декремент затухания характеризует, во сколько раз амплитуда колебаний убывает за один период:
.

Логарифмический декремент затухания характеризует, во сколько раз изменяется логарифм убывания амплитуды:
.

Пусть
и совершаетсяN колебаний, т.е.
. Тогда
,
.

Скорость и ускорение затухающих колебаний:
,,.

Добротность системы
.

Энергия,
.

. При

.

Вынужденные колебания

Д
ля пружинного маятника:
, гдеm – масса тела, F – амплитуда силы, - циклическая частота силы.

Для математического маятника:
.

Длительность переходного режима совпадает со временем релаксации.

- амплитудно-частотная характеристика вынужденных колебаний,
- фазо-частотная характеристика вынужденных колебаний.

Общее уравнение: , где первое слагаемое представляет собой начальное колебаний системы, которое из-за затухания постепенно сходит на нет, а второе – установившийся режим вынужденных колебаний.

Резонанс.

Найдём максимум амплитуды колебаний в зависимости от частоты воздействующей силы. Для этого решим уравнение
. Получим:
.

Резонанс – явление резкого возрастания (убывания) амплитуды вынужденных колебаний при стремлении частоты воздействия внешней силы к частоте собственных колебаний (точнее, к величине
, где - коэффициент затухания, но обычно
).

Резонансная частота – частота внешней возбуждающей силы, при которой достигается максимум амплитуды вынужденных колебаний.

Наложение колебаний

Сложение колебаний одного направления

Пусть
,. Тогда.

Векторная диаграмма:

,

,
. Тогда

,

Таким образом, .

Б
иения: Рассмотри два колебания:
и, где
. Результирующее колебания будет описываться уравнением
.

Частота биения:
, период
.

Взаимно перпендикулярные колебания

Рассмотрим два колебания, происходящие во взаимно перпендикулярных направлениях:
,
.


Фигура Лиссажу - эта линия, которую описывает тело, одновременно колеблющееся в двух взаимно перпендикулярных направлениях.

Свойства фигур Лиссажу:


Механические волны

Распространение волн в упругой среде

Волны – процесс распространения колебаний в пространстве с течением времени.

Упругие волны – волны, распространяющиеся в упругой среде.

Волновая поверхность – геометрическое место точек среды, колеблющихся в одной фазе.

Волновой фронт – поверхность, разделяющая возмущённую и невозмущённую части среды.

Виды волн:

    Поперечные – колебания в которых происходят поперёк направления распространения.

    Продольные – колебания в которых происходят вдоль направления распространения.

В газообразной и жидкой среде колеблется плотность или, что то же, давление. В твёрдой среде и на границе раздела фаз – деформация или, что то же, механическое напряжение.

Волновое уравнение

И
сследуем колебания струны. Пусть в какой-то момент времени струна деформирована так, как показано на рисунке. Тогда уравнение движения для этой струны выглядит так:
. Т.к.
и
, то
. Спроектируем это уравнение на ось: и на осьz : . Т.к.иочень малы, то
,. Тогда
. Введём линейную плотность
, тогда
. Таким образом мы получили волновое уравнение поперечной волны:
, где
.

Волновое уравнение для продольной волны выглядит так:
, где
,p – давление в среде распространения волны.

Анализ механических волн

Пусть
. Тогда
,
и
,
,

,
. Подставим это в волновое уравнение:

.

Общее решение волнового уравнения: , гдеи- произвольные функции.

Гармоническое решение волнового уравнения: .

Период волны
, фаза волны
.

- фазовая скорость волны.

Длина волны – расстояние, на которое распространяется волна за один период,

Волновое число
.

Волновой вектор:
,сонаправлен с направлением распространения волны.

Фазовая скорость волны – скорость, с которой движутся точки волны, колеблющиеся в одной фазе.
.

Геометрические свойства волн

Для трёхмерного случая выражение
, где - это оператор Лапласа, в декартовой системе координат
.

Плоские, цилиндрические и сферические волны – волны, волновой фронт которых представляет собой соответственно плоскость, цилиндр и сферу.

В случае плоской волны в волновом уравнении достаточно заменить
, т.е.
.

Для цилиндрической волны
или, для гармонических колебаний,
. Здесь- проекция волнового вектора на ось.

Уравнение сферической волны:
,
. Здесь - проекция волнового вектора на радиус-вектор.

Бегущие и стоячие волны

Если , то направление распространения волны сонаправленно с осьюz . Если же , то направление распространения волны противоположно направлено осиz .

Рассмотрим сложение двух одинаковых волн, двигающихся навстречу друг другу. Т.е. пусть ,. Тогда- уравнение стоячей волны.

Узлы – это точки, амплитуда колебаний которых равна 0 (т.е.
).

Пучности – это точки, амплитуда колебаний которых максимальна (т.е.
).

Длина стоячей волны
.

Период.

Периодом T называется промежуток времени, в течение которого система совершает одно полное колебание:

N - число полных колебаний за время t .

Частота.

Частота ν - число колебаний в единицу времени:

Единица частоты - 1 герц (Гц) = 1 с -1

Циклическая частота:

Уравнение гармонического колебания:

x - смещение тела от положения. X m - амплитуда, то есть максимальное смещение, (ωt + φ 0) - фаза колебаний, Ψ 0 - его начальная фаза.

Скорость.

При φ 0 = 0:

Ускорение.

При φ 0 = 0:

Свободные колебания.

Свободными называются колебания, возникающие в механической системе (осцилляторе) при единичном отклонении её от положения равновесия, имеющие собственную частоту ω 0 , задаваемую только параметрами системы, и затухающие со временем из-за наличия трения.

Математический маятник.

Частота:

l - длина маятника, g - ускорение свободного падения.

Максимальную кинетическую энергию маятник имеет в момент прохождения положения равновесия:

Пружинный маятник.

Частота:

k - жёсткость пружины, m - масса груза.

Максимальную потенциальную энергию маятник имеет при максимальном смещении:

Вынужденные колебания.

Вынужденными называют колебания, возникающие в колебательной системе (осцилляторе) под действием периодически меняющейся внешней силы.

Резонанс.

Резонанс - резкое увеличение амплитуды X m вынужденных колебаний при совпадении частоты ω вынуждающей силы с частотой ω 0 собственных колебаний системы.

Волны.

Волны - это колебания вещества (механические) или поля (электромагнитные), распространяющиеся в пространстве с течением времени.

Скорость волны.

Скорость распространения волны υ - скорость передачи энергии колебания. При этом частицы среды колеблются около положения равновесия, а не движутся с волной.

Длина волны.

Длина волны λ - расстояние, на которое распространяется колебание за один период:

Единица длины волны - 1 метр (м).

Частота волны:

Единица частоты волны - 1 герц(Гц).

Колебания – изменения какой-либо физической величины, при которых эта величина принимает одни и те же значения. Параметры колебаний:

  • 1) Амплитуда – величина наибольшего отклонения от состояния равновесия;
  • 2) Период – время одного полного колебания, обратная величина – частота;
  • 3) Закон изменения колеблющейся величины со временем;
  • 4) Фаза – характеризует состояние колебаний в момент времени t.

F x = -r k – восстанавливающая сила

Гармонические колебания - колебания, при которых величина, вызывающая отклонение системы от устойчивого состояния, изменяется по закону синуса или косинуса. Гармонические колебания являются частным случаем периодических колебаний. Колебания можно представлять графическим, аналитическим (например, x(t) = Asin (?t + ?), где? - начальная фаза колебания) и векторным способом (длина вектора пропорциональна амплитуде, вектор вращается в плоскости чертежа с угловой скоростью? вокруг оси, перпендикулярной плоскости чертежа, проходящей через начало вектора, угол отклонения вектора от оси X есть начальная фаза?). Уравнение гармонических колебаний:

Сложение гармонических колебаний , происходящих вдоль одной прямой с одинаковыми или близкими частотами. Рассмотрим два гармонических колебания, происходящих с одной частотой: x1(t) = A1sin(?t + ?1); x2(t) = A2sin(?t + ?2).

Вектор, представляющий собой сумму этих колебаний, вращается с угловой скоростью?. Амплитуда суммарного колебаний – векторная сумма двух амплитуд. Ее квадрат равен A?2 = A12 + A22 + 2A1A2cos(?2 - ?1).

Начальная фаза определяется следующим образом:

Т.е. тангенс? равен отношению проекций амплитуды суммарного колебания на координатные оси.

В случае если частоты колебаний отличаются на величину 2?: ?1 = ?0 + ?; ?2 = ?0 - ?, где? << ?. Положим также?1 = ?2 = 0 и А1 = А2:

X 1 (t)+X 2 (t) = A(Sin(W o +?)t+Sin((W o +?)t) X 1 (t)+X 2 (t) =2ACos?tSinW?.

Величина 2Аcos?t есть амплитуда полученного колебания. Она медленно меняется во времени.

Биения . Результат суммы таких колебаний называется биением. В случае, если А1 ? А2, то амплитуда биения меняется в пределах от А1 + А2 до А1 – А2.

В обоих случаях (при равных и при различных амплитудах) суммарное колебание не является гармоническим, т.к. его амплитуда не постоянна, а медленно меняется во времени.

Сложение перпендикулярных колебаний. Рассмотрим два колебания, направления которых перпендикулярны друг другу (частоты колебаний равны, начальная фаза первого колебания равна нулю):

y= bsin(?t + ?).

Из уравнения первого колебания имеем: . Второе уравнение можно преобразовать следующим образом

sin?t?cos? + cos?t?sin? = y/b

Возведем обе части уравнения в квадрат и воспользуемся основным тригонометрическим тождеством. Получим(см ниже): . Полученное уравнение есть уравнение эллипса, оси которого несколько повернуты относительно осей координат. При? = 0 или? = ? эллипс принимает вид прямой y = ?bx/a; при? = ?/2 оси эллипса совпадают с осями координат.

Фигуры Лиссажу . В случае если?1 ? ?2, форма кривой, которую описывает радиус вектор суммарного колебаний гораздо более сложная, она зависит от отношения?1/?2. Если это отношение равно целому числу (?2 кратна?1), при сложении колебаний получаются фигуры, называемые фигурами Лиссажу.

Гармонический осцилятор – колеблющаяся система, потенциальная энергия которой пропорциональна квадрату отклонения от положения равновесия.

Маятник , твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или оси. В физике под М. обычно понимают М., совершающий колебания под действием силы тяжести; при этом его ось не должна проходить через центр тяжести тела. Простейший М. состоит из небольшого массивного груза C, подвешенного на нити (или лёгком стержне) длиной l. Если считать нить нерастяжимой и пренебречь размерами груза по сравнению с длиной нити, а массой нити по сравнению с массой груза, то груз на нити можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса O (рис. 1, а). Такой М. называется математическим . Если же, как это обычно имеет место, колеблющееся тело нельзя рассматривать как материальную точку, то М. называется физическим .

Математический маятник . Если М., отклоненный от равновесного положения C0, отпустить без начальной скорости или сообщить точке C скорость, направленную перпендикулярно OC и лежащую в плоскости начального отклонения, то М. будет совершать колебания в одной вертикальной плоскости по дуге окружности (плоский, или круговой математический М.). В этом случае положение М. определяется одной координатой, например углом j, на который М. отклонен от положения равновесия. В общем случае колебания М. не являются гармоническими; их период T зависит от амплитуды. Если же отклонения М. малы, он совершает колебания, близкие к гармоническим, с периодом:

где g - ускорение свободного падения; в этом случае период T не зависит от амплитуды, то есть колебания изохронны.

Если отклонённому М. сообщить начальную скорость, не лежащую в плоскости начального отклонения, то точка C будет описывать на сфере радиуса l кривые, заключённые между 2 параллелями z = z1 и z = z2, а), где значения z1 и z2 зависят от начальных условий (сферический маятник). В частном случае, при z1 = z2, б) точка C будет описывать окружность в горизонтальной плоскости (конический маятник). Из некруговых М. особый интерес представляет циклоидальный маятник, колебания которого изохронны при любой величине амплитуды.

Физический маятник . Физическим М. обычно называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг горизонтальной оси подвеса (рис. 1, б). Движение такого М. вполне аналогично движению кругового математического М. При малых углах отклонения j М. также совершает колебания, близкие к гармоническим, с периодом: ,

где I - момент инерцииМ. относительно оси подвеса, l - расстояние от оси подвеса O до центра тяжести C, M - масса М. Следовательно, период колебаний физического М. совпадает с периодом колебаний такого математического М., который имеет длину l0 = I/Ml. Эта длина называется приведённой длиной данного физического М.

Пружинный маятник - это груз массой m, закрепленный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы Fупр= - k x, где k - коэффициент упругости, в случае пружины наз. жесткостью. Ур движения маятника:, или.

Из приведенных выражений следует, что пружинный маятник совершает гармо­нические колебания по закону х = A cos (w0 t +?j), с циклической частотой

и периодом

Формула справедлива для упругих колебаний в пределах, в которых выпол­няется закон Гука (Fупр= - k x), т. е. когда масса пружины мала по сравнению с мас­сой тела.

Потенциальная энергия пружинного маятника равна

U = k x2/2 = m w02 x2/2 .

Вынужденные колебания. Резонанс . Вынужденные колебания происходят под действием внешней периодической силы. Частота вынужденных колебаний задается внешним источником и не зависит от параметров самой системы. Уравнение движения груза на пружине может быть получено формальным введением в уравнение некой внешней силы F(t) = F0sin?t: . После преобразований, аналогичных выводу уравнения затухающих колебаний, получаем:

Где f0 = F0/m. Решением этого дифференциального уравнения является функция x(t) = Asin(?t + ?).

Слагаемое? появляется из-за инерционности системы. Запишем f0sin (?t - ?) = f(t) = f0 sin (?t + ?), т.е. сила действует с некоторым опережением. Тогда можно записать:

x(t) = A sin ?t.

Найдем А. Для этого подсчитаем первую и вторую производные последнего уравнения и подставим их в дифференциальное уравнение вынужденных колебаний. Послед приведения подобных получим:

Теперь освежим в своей памяти представления о векторной записи колебаний. Что же мы видим? Вектор f0 представляет собой сумму векторов 2??A и A(?02 - ?2), причем эти вектора (почему-то) перпендикулярны. Запишем теорему Пифагора:

4?2?2A2 + A2(?02 - ?2)2 = f02:

Отсюда выражаем А:

Таким образом амплитуда А является функцией от частоты внешнего воздействия. Однако если колеблющаяся система обладает слабым затуханием? << ?, то при близких значениях? и?0 происходит резкое возрастание амплитуды колебаний. Это явление получило название резонанса.

Гармонические колебания происходят по закону:

x = A cos(ωt + φ 0),

где x – смещение частицы от положения равновесия, А – амплитуда колебаний, ω – круговая частота, φ 0 – начальная фаза, t – время.

Период колебаний T = .

Скорость колеблющейся частицы:

υ = = – A ω sin (ωt + φ 0),

ускорение a = = – A ω 2 cos (ωt + φ 0).

Кинетическая энергия частицы, совершающей колебательное движение: E k = =
sin 2 (ωt + φ 0).

Потенциальная энергия:

E n =
cos 2 (ωt + φ 0).

Периоды колебаний маятников

– пружинного T =
,

где m – масса груза, k – коэффициент жесткости пружины,

– математического T = ,

где l – длина подвеса, g – ускорение свободного падения,

– физического T =
,

где I – момент инерции маятника относительно оси, проходящей через точку подвеса, m – масса маятника, l – расстояние от точки подвеса до центра масс.

Приведенная длина физического маятника находится из условия: l np = ,

обозначения те же, что для физического маятника.

При сложении двух гармонических колебаний одной частоты и одного направления получается гармоническое колебание той же частоты с амплитудой:

A = A 1 2 + A 2 2 + 2A 1 A 2 cos(φ 2 – φ 1)

и начальной фазой: φ = arctg
.

где А 1 , A 2 – амплитуды, φ 1 , φ 2 – начальные фазы складываемых колебаний.

Траектория результирующего движения при сложении взаимноперпендикулярных колебаний одной частоты:

+ cos (φ 2 – φ 1) = sin 2 (φ 2 – φ 1).

Затухающие колебания происходят по закону:

x = A 0 e - β t cos(ωt + φ 0),

где β – коэффициент затухания, смысл остальных параметров тот же, что для гармонических колебаний, А 0 – начальная амплитуда. В момент времени t амплитуда колебаний:

A = A 0 e - β t .

Логарифмическим декрементом затухания называют:

λ = ln
= βT ,

где Т – период колебания: T = .

Добротностью колебательной системы называют:

Уравнение плоской бегущей волны имеет вид:

y = y 0 cos ω(t ± ),

где у – смещение колеблющейся величины от положения равновесия, у 0 – амплитуда, ω – круговая частота, t – время, х – координата, вдоль которой распространяется волна, υ – скорость распространения волны.

Знак «+» соответствует волне, распространяющейся против оси X , знак «–» соответствует волне, распространяющейся по оси Х .

Длиной волны называют ее пространственный период:

λ = υ T ,

где υ –скорость распространения волны, T –период распространяющихся колебаний.

Уравнение волны можно записать:

y = y 0 cos 2π (+).

Стоячая волна описывается уравнением:

y = (2y 0 cos ) cos ωt.

В скобки заключена амплитуда стоячей волны. Точки с максимальной амплитудой называются пучностями,

x п = n ,

точки с нулевой амплитудой – узлами,

x у = (n + ) .

Примеры решения задач

Задача 20

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при t =0 и при t = 1,5 с; в) начертить график этого движения.

Решение

Уравнение колебания записывается в виде x = a cos(t +  0).

По условию известен период колебаний. Через него можно выразить круговую частоту  = . Остальные параметры известны:

а) x = 0,05 cos(t + ).

б) Смещение x при t = 0.

x 1 = 0,05 cos= 0,05 = 0,0355 м.

При t = 1,5 c

x 2 = 0,05 cos( 1,5 + )= 0,05 cos  = – 0,05 м.

в) график функцииx =0,05cos (t + ) выглядит следующим образом:

Определим положение нескольких точек. Известны х 1 (0) и х 2 (1,5), а также период колебаний. Значит, через t = 4 c значение х повторяется, а через t = 2 c меняет знак. Между максимумом и минимумом посередине – 0 .

Задача 21

Точка совершает гармоническое колебание. Период колебаний 2 с, амплитуда 50 мм, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 25 мм.

Решение

1 способ. Записываем уравнение колебания точки:

x = 0,05 cos  t , т. к.  = =.

Находим скорость в момент времени t :

υ = = – 0,05 cos  t.

Находим момент времени, когда смещение равно 0,025 м:

0,025 = 0,05 cos  t 1 ,

отсюда cos t 1 = , t 1 = . Подставляем это значение в выражение для скорости:

υ = – 0,05  sin = – 0,05  = 0,136 м/c.

2 способ. Полная энергия колебательного движения:

E =
,

где а – амплитуда,  – круговая частота, m масса частицы.

В каждый момент времени она складывается из потенциальной и кинетической энергии точки

E k = , E п = , но k = m  2 , значит, E п =
.

Запишем закон сохранения энергии:

= +
,

отсюда получаем: a 2  2 = υ 2 +  2 x 2 ,

υ = 
= 
= 0,136 м/c.

Задача 22

Амплитуда гармонических колебаний материальной точки А = 2 см, полная энергия Е = 3∙10 -7 Дж. При каком смещении от положения равновесия на колеблющуюся точку действует сила F = 2,25∙10 -5 Н?

Решение

Полная энергия точки, совершающей гармонические колебания, равна: E =
. (13)

Модуль упругой силы выражается через смещение точек от положения равновесия x следующим образом:

F = k x (14)

В формулу (13) входят масса m и круговая частота , а в (14) – коэффициент жесткости k . Но круговая частота связана с m и k :

 2 = ,

отсюда k = m  2 и F = m  2 x . Выразив m  2 из соотношения (13) получим: m  2 = , F = x .

Откуда и получаем выражение для смещения x : x = .

Подстановка числовых значений дает:

x =
= 1,5∙10 -2 м = 1,5 см.

Задача 23

Точка участвует в двух колебаниях с одинаковыми периодами и начальными фазами. Амплитуды колебаний А 1 = 3 см и А 2 = 4 см. Найти амплитуду результирующего колебания, если: 1) колебания происходят в одном направлении; 2) колебания взаимно перпендикулярны.

Решение

    Если колебания происходят в одном направлении, то амплитуда результирующего колебания определится как:

где А 1 и А 2 – амплитуды складываемых колебаний,  1 и  2 –начальные фазы. По условию начальные фазы одинаковы, значит  2 –  1 = 0, а cos 0 = 1.

Следовательно:

A =
=
= А 1 +А ­ 2 = 7 см.

    Если колебания взаимно перпендикулярны, то уравнение результирующего движения будет:

cos( 2 –  1) = sin 2 ( 2 –  1).

Так как по условию  2 –  1 = 0, cos 0 = 1, sin 0 = 0, то уравнение запишется в виде:
=0,

или
=0,

или
.

Полученное соотношение между x и у можно изобразить на графике. Из графика видно, что результирующим будет колебание точки на прямой MN . Амплитуда этого колебания определится как: A =
= 5 см.

Задача 24

Период затухающих колебаний Т =4 с, логарифмический декремент затухания  = 1,6 , начальная фаза равна нулю. Смещение точки при t = равно 4,5 см. 1) Написать уравнение этого колебания; 2) Построить график этого движения для двух периодов.

Решение

    Уравнение затухающих колебаний с нулевой начальной фазой имеет вид:

x = A 0 e -  t cos2 .

Для подстановки числовых значений не хватает величин начальной амплитуды А 0 и коэффициента затухания .

Коэффициент затухания можно определить из соотношения для логарифмического декремента затухания:

 = Т .

Таким образом  = = = 0,4 с -1 .