Домой / Hi-tech / Максимальное значение дисперсии будет при использовании волокна. Анализатор хроматической дисперсии

Максимальное значение дисперсии будет при использовании волокна. Анализатор хроматической дисперсии

Дисперсией оптического волокна называют рассеивание во времени составляющих оптического сигнала. Причина дисперсии – разные скорости распространения составляющих оптического сигнала.

Дисперсия проявляется как увеличение длительности (уширение) оптических импульсов при распространении в ОВ. Увеличение длительности оптических импульсов вызывает межсимвольную интерференцию - создает переходные помехи, что ухудшает отношение сигнал/помеха и в результате приводит к ошибкам на приеме. Очевидно, что межсимвольная интерференция увеличивается с уширением оптических импульсов. При фиксированном значении уширения импульсов межсимвольная интерференция возрастает с уменьшением периода следования импульсов T. Таким образом, дисперсия ограничивает скорость передачи информации в линии B=1/T и длину регенерационного участка (РУ).

В оптических волокнах можно выделить несколько видов дисперсии: модовую, поляризационную модовую и хроматическую дисперсию.

В многомодовом ОВ преобладает межмодовая дисперсия, вызванная наличием большого числа мод с различным временем распространения.

существенно превышает другие виды дисперсии, поэтому полоса пропускания таких ОВ определяется в основном модовой дисперсией. Увеличения полосы пропускания многомодовых ОВ добиваются за счет градиентного профиля показателя преломления, в котором показатель преломления в сердцевине плавно уменьшается от оси ОВ к оболочке. При таком градиентном профиле скорость распространения лучей вблизи оси волокна меньше, чем в области, прилегающей к оболочке. В результате, с увеличением протяженности траектории направляемых лучей на отрезке волокна возрастает их скорость распространения вдоль траектории. Чем больше длина пути, тем больше скорость. Это обеспечивает выравнивание времени распространения лучей и, соответственно, снижение модовой дисперсии. Оптимальным с точки зрения минимизации модовой дисперсии является параболический профиль.

Полоса пропускания многомодовых волокон характеризуется коэффициентом широкополосности DF , МГц. км, значение которого указывается в паспортных данных ОВ на длинах волн, соответствующих первому и второму окнам прозрачности. Полоса пропускания для типовых многомодовых оптических волокон составляет 400…2000 МГц. км.

Многомодовые оптические находят применение на локальных сетях, в центрах обработки данных, ведомственных сетях нбоьшой протяженности. С системами спктрального уплотнения не используются.



В одномодовых ОВ распространяется только одна основная мода и модовой дисперсии нет.

Основным фактором, ограничивающим протяженность участков регенерации высокоскоростных ВОЛП, является хроматическая дисперсия. В рекомендациях Международного союза электросвязи ITU-T G.650 приводится следующее определение: хроматическая дисперсия (ХД) - это уширение светового импульса в оптическом волокне, вызванное разностью групповых скоростей различных длин волн, составляющих спектр оптического информационного сигнала. Длительность оптического импульса на выходе протяженного оптического волокна определяется относительной групповой задержкой самой медленной спектральной компоненты относительно самой быстрой. Таким образом, влияние ХД пропорционально ширине спектра источника излучения. С увеличением протяженности линии передачи и скорости передачи информации влияние хроматической дисперсии возрастает.

Вклад в ХД вносят следующие составляющие: материальная и волноводная дисперсия. Важной оптической характеристикой стекла, используемого при изготовлении волокна, является дисперсия показателя преломления, проявляющаяся в зависимости скорости распространения сигнала от длины волны – материальная дисперсия. Кроме этого, при производстве одномодового волокна, когда кварцевая нить вытягивается из стеклянной заготовки, в той или иной степени возникают отклонения в геометрии волокна и в радиальном профиле показателя преломления. Сама геометрия волокна вместе с отклонениями от идеального профиля также вносит существенный вклад в зависимость скорости распространения сигнала от длины волны, это – волноводная дисперсия.



Хроматическая дисперсия определяется совместным действием материальной D M (l ) и волноводной дисперсий D B (l )

D (l )= D M (l )+ D B (l )

Материальная дисперсия определяется дисперсионными свойствами материала – кварца,

D M = - l ¶ 2 n . c l 2

Волноводная дисперсия D B (l ) обусловлена зависимостью групповой

скорости распространения моды от длины волны, в первую очередь определяется профилем показателя преломления сердцевины волокна и внутренней оболочки.

Достаточно часто для оценки волноводной дисперсии используют следующее соотношение:

где V – нормированная частота; b – нормированная постоянная распространения, которая связана с b следующим соотношением:

получила название нормированный параметр волноводной дисперсии.

Рис. 3.13. Спектр хроматической дисперсии стандартного ступенчатого волокна

Количественно хроматическую дисперсию ОВ оценивают коэффициентом D с размерностью пс/(нм. км).Хроматическая дисперсия волокна в

пикосекундах (пс) на участке протяженностью L км, равна

s = D × L × Dl

где Dl - полоса длин волн источника оптического излучения, нм.

Основными параметрами хроматической дисперсии являются:

1. Длина волны нулевой дисперсии l 0 , нм. На этой длине волны

материальная и волноводная составляющие компенсируют друг друга и хроматическая дисперсия обращается в нуль.

2. Коэффициент хроматической дисперсии, пс/(нм×км). Данный параметр определяет уширение оптического импульса, распространяющегося на расстояние в 1 км при ширине спектра источника 1 нм.

3. Наклон дисперсионной характеристики S 0 определяется как касательная

к дисперсионной кривой на длине волны l 0 (см. рис. 3.13). Аналогично может

быть определен наклон S в любой точке спектра.

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне, в виду отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны.

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны

где введены коэффициенты M(l) и N(l) - удельные материальная и волноводная дисперсии соответственно, а Dl (нм) - уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l) = M(l) + N(l). Удельная дисперсия имеет размерность пс/(нм*км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация M(l) и N(l), а результирующая дисперсия D(l) обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l0. Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l0 для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF), делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне, чтобы устранить систематическую составляющую ошибки.

Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера (Sellmeier, ): t (l) = A + Bl2 + Cl-2. Коэффициенты A, B, C являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую t (l). Тогда удельная хроматическая дисперсия вычисляется по формуле:

где l0 = (C/B)1/4 - длина волны нулевой дисперсии (zero dispersion wavelength), новый параметр S0 = 8B - наклон нулевой дисперсии (zero dispersion slope, его размерность пс/(нм2*км)), а l - рабочая длина волны, для которой определяется удельная хроматическая дисперсия.

а) многомодового градиентного волокна (62,5/125)

б) одномодового ступенчатого волокна (SF)

в) одномодового волокна со смещенной дисперсией (DSF)

Статья в тему

Тактирующие устройства. Триггеры
Данная работа посвящена рассмотрению роли триггеров в цифровых устройствах. Во всех современных компьютерах применяется логическая система, изобретения Джорджем Булем. С развитием электроники появился такой класс электронной техники, как цифровая. Цифровая техника включает в себя такие устройства...

Прежде чем рассматривать понятие анализатора хроматической дисперсии, обозначим, какие бывают виды дисперсий в оптическом волокне, что такое хроматическая дисперсия (ХД), из каких составляющих она слагается, какие существуют методы ее измерения.

Виды дисперсий

Различают следующие виды дисперсий в световоде:

    модовая или межмодовая;

    хроматическая (материальная, волноводная);

    поляризационная.

Их сумма образует полную дисперсию в оптоволокне.

Хроматическая дисперсия

Хроматическая дисперсия оказывает влияние на производительность системы. Явление хроматической дисперсии возникает по причине того, что распространение длин волн в оптическом волокне происходит с немного отличной друг от друга скоростью. Как результат, возникает затянутый, а потому неэффективный импульс. Когда значение ХД слишком большое, происходят перекрестная модуляция и потери сигнала. В то же время небольшие контролируемые значения хроматической дисперсии нужны, чтобы устранять нежелательные нелинейные эффекты, такие как четырехволновое смешение.

Для стекла, которое используется при изготовлении оптического волокна, важная характеристика – дисперсия показателя преломления (материальная дисперсия). Она проявляется в зависимости скорости распространения оптического сигнала от длины волны. Помимо того, в момент производства при вытягивании кварцевой нити из стеклянной заготовки возникают различной степени отклонения как по геометрии волокна, так и в радиальном профиле показателя преломления. Геометрия + отклонения от идеального профиля вносят свой существенный вклад в вышеназванную зависимость скорости распространения оптического сигнала от длины волны – это уже называется волноводной дисперсией.

Хроматическая дисперсия является совместным влиянием материальной и волноводной дисперсий.

ХД наблюдается при распространении светового сигнала как в одно-, так и в многомодовом волокне. Но наиболее четко проявляется она в одномоде по причине отсутствия в нем межмодой дисперсии.

Методы измерения ХД

Стандартом ГОСТ Р МЭК 60793-1-42-2013 определяются следующие методы:

    фазового сдвига;

    спектральной групповой задержки во временной области;

    дифференциального фазового сдвига;

    интерферометрии.

Анализатор хроматической дисперсии

Анализаторы ХД можно условно разделить на стационарные и полевые.

В настоящее время измерение хроматической дисперсии становится все более критичным для телекомкомпаний и провайдеров, ищущих способы улучшения своих систем путем модернизации их скорости передачи. Современные анализаторы хроматической дисперсии отличаются высокой производительностью, позволяя проводить все виды измерений ХД, в том числе в полевых условиях.

Например, анализатор хроматической дисперсии FTB-5800 производства компании EXFO для всестороннего тестирования ХД в полевых условиях определяет ее посредством метода фазового сдвига . От источника, расположенного с одной стороны линии связи, в оптическое волокно посылается модулированный световой сигнал. На другую сторону данной линии связи различные длины волн приходят с разными сдвигами фаз. Путем измерения этих сдвигов происходит вычисление соответствующих временных задержек и определение значения ХД.

Другие методы измерения ХД

Различают также такой метод, как измерение времени полета (FOTR-168). Например, на нем основана измерительная система CD-OTDR на базе , что позволяет проводить оценку хроматической дисперсии отдельных волокон. При тестировании используется одно волокно и множество длин волн, что определяет увеличение точности измерения, а также сокращение времени тестирования.

Еще один метод – импульсный , регламентированный стандартом ITUT G650. Импульсный метод характеризуется прямым измерением задержки импульсов света с различными длинами волн при прохождении через оптическое волокно заданной длины.

2.1.Причины и виды дисперсии

Основной причиной возникновения дисперсии в волокне является некогерентность источника излучения (лазера). Идеальный источник всю мощность излучает на заданной длине волны λ 0 , однако реально излучение идёт в спектре λ 0 ± Δλ (рис.2.1), так как не все возбуждённые электроны возвращаются в то же состояние, из которого они были выведены при накачке.

Рис.2.1. Реальное излучение лазера

Коэффициент преломления является частотнозависимой величиной, то-есть n есть функция от λ: n = f (λ), см. рис.2.2.

Рис.2.2. Зависимость коэффициента преломления от длины волны

Следовательно, при распространении сигнала, состоящего из смеси длин волн λ 0 ± Δλ , части сигнала идут с разной скоростью, и возникает дисперсия:

λ ± Δλ → n ± Δn → c /(n ± Δn) → v ± Δv → Δτ.

Этот вид дисперсии называется материальной дисперсией.

Поперечная постоянная распространения волны (вдоль радиуса волокна) также зависит от длины волны, то есть от длины волны зависит площадь моды и площадь той части оболочки, которая захватывается площадью моды, выходящей за границы сердцевины. Распространение света вдоль пограничной с сердцевиной части оболочки идёт с большей скоростью, чем по сердцевине, что вносит вклад в изменение дисперсии. Эта дисперсия называется волноводной дисперсией. Обе эти дисперсии, материальная и волноводная, в сумме называются хроматической дисперсией. Они складываются арифметически. На рис.2.3 показаны зависимости материальной и волноводной дисперсии и их суммы от длины волны. Для стандартного одномодового волокна при λ = 1300 нм эти дисперсии равны и противоположны по знаку, и суммарная дисперсия равна нулю.

Рис.2.3. Зависимость материальной и волноводной дисперсии в стандартном одномодовом волокне от длины волны (нм)

В многомодовом волокне кроме хроматической дисперсии существует ещё межмодовая дисперсия. Если мод несколько, то каждая распространяется вдоль волокна со своей скоростью, которые могут значительно отличаться друг от друга. На рис.2.4 приведены графики фазовых скоростей некоторых мод.

Рис. 2.4. График фазовых скоростей некоторых мод в зависимости от частоты.

Если параметры волокна меняются, например, случайно изменится диаметр сердцевины, происходит перестройка мод, и моды обмениваются энергией. Межмодовая дисперсия на порядок больше хроматической дисперсии, что явилось причиной разработки одномодовых кабелей, в которых межмодовая дисперсия отсутствует. В таблице 2.1 приведено примерное соотношение величин видов дисперсии для различных типов волокон.

Табл.2.1. Соотношение между различными видами дисперсии

Суммарная дисперсия определяется как корень квадратный из суммы квадратов хроматической и межмодовой дисперсий:

(2.1)

Материальная и волноводная дисперсии рассчитываются по формулам

τ мат = ∆λ∙ М(λ)∙ L (2.2),

τ вв = ∆λ∙ В(λ)∙ L (2.3),

где ∆λ – ширина полосы излучения лазера, нм;

М(λ) и В(λ) – удельные материальная и волноводная дисперсии, пс/(нм·км);

L – длина линии, км.

Величины М(λ) и В(λ) приводятся в справочниках.

τ Σ = [τ мм 2 +(τ мат + τ вв) 2 ] 1/2

Вариант табл. 2.1. Примерные значения величин дисперсии для различных типов волокон

2.2. Поляризационная модовая дисперсия (ПМД)

Свет представляет собой колебания поперечные к направлению распространения света (рис.2.5). Если конец вектора поля описывает прямую линию, то такая поляризация называется линейной, если круг или эллипс, то круговой или эллиптической. Большинство людей за редким исключением поляризацию света не ощущают, только некоторые (таким был, например Лев Толстой), чётко различают поляризованный и неполяризованный свет. Обычный интегральный светоприёмник (диод) также реагирует только на интенсивность волны, а не на её поляризацию. Однако некоторые оптические устройства, например некоторые типы усилителей имеют коэффициент усиления, зависящий от поляризации.

Рис. 2.5. Виды линейной поляризации

Кроме того, поляризация вектора имеет большое значение в процессах отражения и преломления, так как коэффициенты Френеля, характеризующие амплитуды отражённой и преломленной волны, в общем случае зависят от направления вектора поляризации (рис.2.6). На рис.2.6 показано, как отражается смесь лучей параллельной (черточки) и перпендикулярной (точки) поляризаций по отношению к плоскости распространения при переходе через горизонтальную плоскость раздела. Из рисунка видно, что при некотором угле (угол Брюстера) все отражённые волны имеют перпендикулярную поляризацию, а преломленные – параллельную.

Рис. 2.6. Отражение волн разной поляризации.

В классическом одномодовом волокне единственной модой является волна НЕ 11 . Однако если учитывать поляризацию, то в волокне присутствуют две взаимно ортогональные моды, соответствующие горизонтальной и вертикальной осям x и y. В реальной ситуации волокно не является в сечении всегда идеальным кругом, а часто представляет в силу тех или иных особенностей технологии небольшой эллипс. Кроме того, при намотке кабеля и при его прокладке возникают не симметричные механические напряжения и деформации волокна, что приводит к двойному лучепреломлению. Коэффициент преломления вследствие дополнительного напряжения будет изменяться, и скорости распространения ортогональных мод на различных участках будут отличаться друг от друга, что будет вносить разные временные задержки при распространении ортогональных мод. Импульс в целом будет испытывать статистическое уширение во времени, которое называется поляризационной модовой дисперсией (ПМД). Так как ПМД на разных участках линии различна и подчиняется статистическим закономерностям, то обычно используется среднеквадратичное суммирование, и расчёт ПМД производится по формуле

Информация по ОВ передается в виде коротких оптических импульсов. Энергия импульса распределяется между всеми направляемыми модами. Скорости всех мод вдоль их траектории в ступенчатом ОВ одинаковы. Однако время, которое им понадобится для прохождения 1 км ОВ, будет различным. На выходе ОВ импульсы отдельных мод, пришедшие в разное время, складываются, образуя более широкий, по сравнению с входным, оптический импульс (рис. 2.1).

Рис. 2.1. Траектории меридиональных лучей в ОВ со ступенчатым профилем показателя преломления.

Явление уширения импульса в многомодовом ОВ называется межмодовой дисперсией, которая характеризуется величиной D m , измеряющейся в нс/км. Если величина дисперсии известна, то уширение импульса Δt в ОВ длиной L в первом приближении определится выражением:

Верхняя оценка величины межмодовой дисперсии: наименьшую траекторию и наименьшее время распространения t min имеет луч, распространяющийся вдоль оси ОВ.

Наибольшую траекторию и наибольшее время распространения t max имеет луч, распространяющийся по ОВ, отражаясь от границы раздела сердцевины и оболочки под углом полного внутреннего отражения.

Тогда . (2.4)

Дисперсия ограничивает скорость передачи информации по ОВ.

Рис. 2.2. Зависимость межмодовой дисперсии от относительной разности показателей преломления сердцевины и оболочки.

С величиной межмодовой дисперсии [нс/км] связано понятие широкополосности волокна или удельной полосы пропускания B[МГц км]

Величина широкополосности для ступенчатых многомодовых кварцевых волокон ограничивается величиной 20-50 МГц км.

Для градиентных многомодовых волокон широкополосность лежит в пределах 200 – 2000 МГц км.

Радикальным способом уменьшения дисперсии является переход от многомодовой передачи к одномодовой.

Впервые одномодовый режим передачи в волокне со ступенчатым профилем показателя преломления был достигнут путем уменьшения радиуса сердцевины до 5 мкм. Такие волокна называют стандартными одномодовыми волокнами.

Важным нормируемым параметром у одномодовых волокон является диаметр w или радиус r n м модового пятна (поля), который характеризует потери при вводе света в волокно и используются для расчетов вместо радиуса или диаметра сердцевины, его величина зависит от типа волокна и рабочей длины волны и лежит в пределах 8..10 мкм (фактически он на 10-12% больше диаметра сердцевины).



Для одномодового ОВ распределение интенсивности поля моды можно аппроксимировать гауссовской кривой:

Рис. 2.3. Определение диаметра модового поля.

На рис. 2.4. показаны рассчитанные по выражениям распределения модового поля для стандартного волокна на длинах волн, которые обычно используются для связи.

Рис. 2.4. Распределение модового поля основной моды в стандартном волокне.

Поскольку скорость распространения света в ОВ зависит от длины волны излучения λ, разные спектральные составляющие сигнала распространяются с разной скоростью.

Рис. 2.5. Спектр излучения источника.

Хроматическая дисперсия состоит из двух составляющих: материальной и волноводной:

Как физическая величина измеряется в пс / (нм·км) и означает уширение импульса в волокне длиной 1 км при ширине спектра сигнала 1 нм (с учетом скорости передачи и ширины спектра источника излучения).

Материальная дисперсия обусловлена зависимостью показателя преломления кварца n (как фазового, так и группового) или скорости распространения света в кварце от длины волны (рис. 1.10) и пропорциональна второй производной показателя преломления по длине волны:



Рис. 2.6. Возникновение материальной дисперсии.

На рис. 2.7 показана зависимость материальной дисперсии от длины волны. Видно, что материальная дисперсия имеет знак и при длине волны нулевой материальной дисперсии λ = λ 0 mat проходит через 0.

Волноводная дисперсия D в не связана со свойствами материала, но зависит от конструкции и размеров волновода. Ее появление связано с тем, что волна в одномодовом ОВ распространяется частично в сердцевине, частично в оболочке и показатель преломления для нее принимает среднее значение между показателями преломления сердцевины и оболочки. При изменении длины волны глубина проникновения поля в кварцевую оболочку меняется и, следовательно, меняется среднее значение показателя преломления.

Рис. 2.7. Хроматическая дисперсия в стандартном одномодовом
волокне.

Рис. 2.8. Возникновение волноводной дисперсии.

Волноводная дисперсия отрицательна и с увеличением λ она уменьшается. Это позволяет, изменяя размеры и конструкцию ОВ, управлять зависимостью D в, а, следовательно, и зависимостью D хр от λ.

Существует такая длина волны, при которой материальная и волноводная дисперсии равны по модулю и имеют противоположные знаки, то есть хроматическая дисперсия равна нулю. Эту длину волны называют длиной волны нулевой хроматической дисперсии или просто длиной волны нулевой дисперсии λ 0 D .

В большинстве одномодовых ОВ расположение осей наибольшей и наименьшей скорости является случайным и расширение проходящего по ОВ импульса растет с увеличением длины L пропорционально корню квадратному из длины ОВ:

где D p – поляризационно-модовая дисперсия.

Для большинства одномодовых ОВ величина поляризационно-модовой дисперсии лежит в пределах 0.02 – 0.2 пс/км 0.5 .