Домой / Интернет / Применение силы упругости. Силы упругости. Силы в природе Сила упругости в живой природе

Применение силы упругости. Силы упругости. Силы в природе Сила упругости в живой природе

«Сила упругости закон Гука» - Закон Гука. Спортивные снаряды Батуты Различные пружины. Книга, лежащая на столе, может само по себе упасть, провалиться? Почему покоятся тела, лежащие на опоре или подвешенные на нити? Сила упругости. Выяснить природу силы упругости. Сдвиг. Деформации в жизни. Растяжение, сжатие. Кручение. Падают ли тела?

«Применение кислорода» - Пожарный с автономным дыхательным аппаратом. При работе в воде. Вне земной атмосферы человек вынужден брать с собой запас кислорода. Больной находится в специальном аппарате в кислородной атмосфере при пониженном давлении. Применение кислорода. Кислород необходим практически всем живым существам. Главными потребителями кислорода являются энергетика, металлургия и химическая промышленность.

«Применение ИКТ на уроках географии» - Решение задач: Как называют эпоху открытий конца XV – начала XVIIв. ? Что в переводе с греческого обозначает слово «география»? Непосредственное применение в учебном процессе. Кто открыл Америку? Применение информационных технологий для обеспечения познавательного досуга. Какой путешественник оставил после себя труд «Хождение за три моря»?

«Сила упругости» - Закон Гука для малых упругих деформаций. Механическое напряжение. Виды силы упругости. Графическое представление закона Гука. Силы упругости имеют электромагнитную природу. Определите жесткость пружины. Что называется жесткостью тела? Основные типы упругой деформации. Формула закона Гука. Виды деформаций.

«Интерференция света и её применение» - - Угловой размер источника. - Условие максимума интерференции. Полосы локализованы в бесконечности, имеют вид колец. По смещению с помощью компенсатора определяют n2 - n1. Кольца Ньютона в зеленом и красном свете. 1. Цвета тонких пленок – интерференция при освещении пленки широким пучком. Позволяет обнаружить изменение n2 - n1 около 10-7.

«Применение углеводородов» - Применение алканов. Велико значение в медицине, парфюмерии и косметике. Значение алканов в современном мире огромно. Используется в медицине, паpфюмеpии и косметике. Проверь себя!!! Высшие алканы входят в состав смазочных масел. Цели: Циклопропан используется для наркоза. Производство пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ.

По физической природе силы упругости ближе к силам трения, чем к силам гравитации, так как они вызваны взаимодействием заряженных частиц, которые являются основой всех тел.

Однако силы упругости определяют только взаимное расположение воздействующих друг на друга тел и появляются только при деформации, тогда как силы трения скольжения возникают при относительном движении тел.

На расстояниях около диаметра молекулы силы притяжения между молекулами компенсированы силами отталкивания, то есть равнодействующая сил притяжения и отталкивания равна нулю. Если тело растягивать, то расстояние между молекулами увеличивается, при этом силы притяжения между молекулами становятся больше по величине, чем силы отталкивания. В теле появляются силы, которые препятствуют растяжению тела. При сжимании тела расстояние между молекулами уменьшается. Силы отталкивания становятся по модулю больше, чем силы притяжения, так возникают силы, противостоящие такого рода деформации тела.

Так, при деформации тел появляются силы электромагнитной природы, которые препятствуют изменению размеров тела, это так называемые силы упругости.

Деформация тела

Определение

Деформацией тела называют изменение размеров или формы тела. Виды деформаций: растяжение, сжатие, сдвиг, изгиб, кручение. Деформации тела возникают при перемещении одних частей тела по отношению к другим.

Силы упругости возникают только при деформациях. Величина силы упругости зависит от размера деформации. Силы упругости направлены против направления смещения частей тела при его деформации.

Для твердых тел выделяют два предельных вида деформации: упругие деформации и пластические. Если после прекращения действия деформирующей силы тело полностью восстанавливает свои размеры и форму, то такой вид деформации называют упругой. Для упругих деформаций существует однозначная зависимость между величиной деформации и деформирующей силой. Если после снятия деформирующей силы тело не восстанавливает (или восстанавливает не полностью) свои размер и форму, то такие деформации называют пластическими.

Определение силы упругости

Определение

Силой упругости (${\overline{F}}_{upr}$) называют силу, которая действует со стороны тела подвергшегося деформации, на касающиеся его тела. Данная сила направлена в сторону, противоположную смещению частей тела в состоянии деформации.

Силы упругости зависят от расположения тел при их взаимодействии и возникают только при деформациях тел.

Силы упругости направлены перпендикулярно к поверхности соприкосновения взаимодействующих тел. Исключение составляет деформация сдвига, при такой деформации сила упругости имеет касательную составляющую.

Силы упругости играют важную роль в проблемах механического равновесия, в том случае, если модели недеформируемого тела не достаточно.

Силы упругости являются частой причиной возникновения механических колебаний. При упругой деформации появляются силы, которые стремятся вернуть тело в положение равновесия. Если тело вывели из состояния равновесия и предоставили самому себе, то под воздействием си упругости появляется движение этого тела к положению равновесия. В результате существования инерции тело проходит положение равновесия и тогда возникает деформация противоположного знака, при этом процесс повторяется.

Закон Гука

Эксперименты показывают, что почти у всех твердых тел при небольших упругих деформациях размер деформации пропорционален деформирующей силе. Эта зависимость была установлена английским ученым Р. Гуком. Закон упругой деформации носит имя своего первооткрывателя. При больших деформациях связь между величиной деформации и деформирующей силой становится неоднозначной и точно нелинейной, упругая деформация превращается в пластическую.

Закон Гука утверждает, что при малых упругих деформациях величина деформации пропорциональна силе ее вызывающей. Закон Гука справедлив при видах упругой деформации (растяжения, сжатия, сдвига, кручения, изгиба).

Например, деформацию растяжения (сжатия) характеризуют с помощью такой величины как абсолютное удлинение: ($\Delta l=\left|l-l_0\right|$, где $l_0$ - длина недеформированного стержня). Тогда закон Гука для силы упругости записывают как:

где $k$ - коэффициент упругости, $\left=\frac{Н}{м}$. Коэффициент упругости зависит от материала тела, его размеров и формы.

Закон Гука выполняется с хорошей точностью для деформаций, появляющихся в стержнях из стали, чугуна, и других твердых веществ, в пружинах.

Для всяких упругих деформаций можно ввести постоянные, которые характеризуют упругие свойства только материала и не зависят от размеров тела. Например, модуль Юнга ($E$) для изотропного тела является характеристикой упругих свойств. Модуль Юнга равен механическому напряжению ($\sigma =\frac{F}{S},\ где\ F-\ $деформирующая сила или сила, возникающая в теле при деформации; $S$ - площадь), при котором относительное удлинение ($\frac{\Delta l}{l_0}$) равно единице при упругой деформации:

\[\frac{\Delta l}{l_0}=\frac{1}{E}\sigma \left(2\right).\]

Значение модуля Юнга определяют эмпирически.

Если деформации тела малы, то силы упругости можно определять по ускорению, которое данные силы сообщают телам. Если тело неподвижно, то модуль силы упругости находят из равенства нулю векторной суммы сил, которые действуют на тело.

Так, будет деформация упругой или пластической зависит не только от материала тела, но и от величины приложенной нагрузки. Упругие деформации много применяют, например, в амортизационных устройствах: рессорах, пружинах и т.д. На основе пластической деформации базируется разные виды холодной обработки металлов: прокатка, ковка и т.д.

Примеры задач на силу упругости и закон Гука

Пример 1

Задание: На проволоке, диаметр которой равен $d,$ висит груз (рис.1). Масса груза равна $m$. Каково натяжение материала ($\sigma $) у нижнего конца проволоки?

Решение: Сделаем рисунок.

Напряжение материала проволоки найдем, используя определение величины $\sigma $:

\[\sigma =\frac{F}{S}\left(1.1\right),\]

где $F$ - сила, деформирующая проволоку; $S=\frac{\pi d^2}{4}$ - площадь поперечного сечения проволоки. Силу $F$ найдем, используя третий закон Ньютона, согласно которому, сила $F$ приложенная к проволоке и растягивающая ее будет равна силе упругости, которая действует на груз и не дает ему падать под воздействием силы тяжести:

\[\overline{F}=-{\overline{F}}_u\left(1.2\right).\]

Величину силы упругости найдем, рассматривая рис.1 и силы, действующие на груз, висящий на проволоке в состоянии равновесия. Запишем второй закон Ньютона:

Из проекции уравнения (1.2) на ось Y получим:

Тогда из формул (1.1), (1.2) и (1.4) имеем:

\[\sigma =\frac{mg}{S}=\frac{4mg}{\pi d^2\ }(\frac{Н}{м^2}).\]

Ответ: $\sigma =\frac{4mg}{\pi d^2}\frac{Н}{м^2}$

Пример 2

Задание: Какова работа, совершенная при сжатии пружины на величину $\Delta l$ (изменение длины пружины), если жесткость пружины равна $k$, а деформация является упругой?\textit{}

Если деформация упругая, то по закону Гука деформирующая сила (сила сжатия) равна:

Работу найдем, используя ее определение:

Сила и перемещение сонаправлены, поэтому можно от произведения векторов в подынтегральном выражении перейти к произведению модулей соответствующих проекций на ось X:

Ответ: $A=\frac{k\Delta l^2}{2}$

Все твердые тела способны под действием внешних сил де­формироваться, т. е. изменять свою форму или объем.

Тела, в которых после прекращения действия внешних сил деформация полностью исчезает и первоначальная форма тела и его объем полностью восстанавливаются, называют абсолютно упругими, а саму деформацию - упругой. Тела, которые после прекращения действия внешних сил не восстанавливают свою первоначальную форму (и объем), называют неупругими или пластичными; соответственно их деформацию называют неуп­ругой, пластичной. В случае, когда после устранения внешних сил деформация полностью сохраняется, тело называют абсо­лютно неупругим.

Свойство тел восстанавливать форму и объем после прекра­щения действия внешних сил называют упругостью. Различают объемную упругость и упругость формы. Объемная упругость - универсальное свойство всех тел, включая жидкости и газы.

Упругость формы - свойство многих твердых тел, и прежде всего кристаллических. В природе, конечно, нет абсолютно уп­ругих и абсолютно неупругих тел. Все тела в той или иной сте­пени являются неупругими. Но многие твердые тела (например, металлические) при малых и медленно протекающих деформа­циях ведут себя как абсолютно упругие; остаточные деформа­ции в них настолько малы, что ими вполне можно пренебречь. С другой стороны, имеются такие тела (воск, сырая глина, вар, свинец), которые уже при малых деформациях ведут себя как абсолютно неупругие: они почти полностью сохраняют дефор­мации после устранения внешних сил.

Внутренние силы, возникающие при деформациях упругих и неупругих тел, существенно различаются между собой. В упру­гих телах они определяются величиной и видом деформации и при устранении внешних сил возвращают телу его первоначаль­ную форму и объем. В неупругих телах внутренние силы зависят от скорости изменения деформации и при устранении внешних сил исчезают, не возвращая телу первоначальной формы.

Внутренние силы, возникающие в упругих телах при неболь­ших деформациях, называют упругими. Их нам и предстоит изу­чить. Внутренние силы в неупругих телах относятся к силам иного вида, называемым силами вязкости или силами внутрен­него трения. Эти силы мы изучим позднее.

Виды упругих деформаций.

Существует множество различных видов упругих деформаций: одностороннее растяжение (и сжатие), всестороннее растяжение (и сжатие), изгиб, сдвиг, круче­ние и др. Но не все виды деформации являются независимыми, многие из них могут быть сведены к совокупности небольшого числа более простых деформаций. Так, изгиб стержня можно свести к деформациям неоднородного растяжения и сжатия, кручение - к неоднородному сдвигу, сдвиг - к неоднородному растяжению и сжатию в двух взаимно перпендикулярных на­правлениях и т. д. Можно показать, что любую упругую дефор­мацию, как бы сложна она ни была, можно свести к совокупно­сти двух деформаций, получивших название основных: растя­жение (или сжатие) и сдвиг.

Закон Гука. При любой деформации (простой или сложной) в теле возникают упругие силы. Гук еще в 1675 г. обнаружил, что величина и направление сил упругости определенным обра­зом зависят как от вида, так и от величины деформации.

УстановленныйГуком закон, носящий теперь его имя, состо­ит в следующем: а) при любой малой деформации сила упру­гости пропорциональна величине деформации; б) малые дефор­мации тела пропорциональны приложенным силам.

Чтобы записать этот закон в математической форме, нужно ввести новые физические величины, характеризующие с количе­ственной стороны деформацию и силу упругости.

Как вы уже знаете из курса физики основной школы, силы упругости связаны с деформацией тел, то есть изменением их формы и (или) размеров.

Связанная с силами упругости деформация тел не всегда заметна (подробнее мы остановимся на этом ниже). По этой причине свойства сил упругости изучают обычно, используя для наглядности пружины: их деформация хорошо видна на глаз.

Поставим опыт

Подвесим к пружине груз (рис. 15.1, а). (Будем считать, что массой пружины можно пренебречь.) Пружина растянется, то есть деформируется.

На подвешенный груз действуют сила тяжести т и приложенная со стороны растянутой пружины сила упругости упр (рис. 15.1, б). Она вызвана деформацией пружины.

Согласно третьему закону Ньютона на пружину со стороны груза действует такая же по модулю, но противоположно направленная сила (рис. 15.1, в). Эта сила – вес груза: ведь это сила, с которой тело растягивает вертикальный поднес (пружину).

Силы упр и , с которыми груз и пружина взаимодействуют друг с другом, связаны третьим законом Ньютона и поэтому имеют одинаковую физическую природу. Следовательно, вес – это тоже сила упругости. (Действующая на пружину со стороны груза сила упругости (вес груза) обусловлена деформацией груза. Эта деформация незаметна, если грузом является гиря или брусок. Чтобы деформация груза стала тоже заметной, можно в качестве груза взять массивную пружину: мы увидим, что она растянется.) Действуя на пружину, вес груза растягивает ее, то есть является причиной ее деформации. (Во избежание недоразумений подчеркнем еще раз, что пружину, к которой подвешен груз, растягивает не приложенная к грузу сила тяжести груза, а приложенная к пружине со стороны груза сила упругости (вес груза).)

На этом примере мы видим, что силы упругости являются и следствием, и причиной упругой деформации тел:
– если тело деформировано, то со стороны этого тела действуют силы упругости (например, сила упр на рисунке 15.1, б);
– если к телу приложены силы упругости (например, сила на рисунке 15.1, в), то это тело деформируется.

1. Какие из изображенных на рисунке 15.1 сил
а) уравновешивают друг друга, если груз покоится?
б) имеют одинаковую физическую природу?
в) связаны третьим законом Ньютона?
г) перестанут быть равными по модулю, если груз будет двигаться с ускорением, направленным вверх или вниз?

Всегда ли деформация тела заметна? Как мы уже говорили, «коварная» особенность сил упругости состоит в том, что связанная с ними деформация тел далеко не всегда заметна.

Поставим опыт

Деформация стола, обусловленная весом лежащего на нем яблока, незаметна на глаз (рис. 15.2).

И тем не менее она есть: только благодаря силе упругости, возникшей вследствие деформации стола, он удерживает яблоко! Деформацию стола можно обнаружить с помощью остроумного опыта. На рисунке 15.2 белые линии схематически обозначают ход луча света, когда яблока на столе нет, а желтые линии – ход луча света, когда яблоко лежит на столе.

2. Рассмотрите рисунок 15.2 и объясните, благодаря чему деформацию стола удалось сделать заметной.

Некоторая опасность состоит в том, что, не заметив деформации, можно не заметить и связанной с ней силы упругости!

Так, в условиях некоторых задач фигурирует «нерастяжимая нить». Под этими словами подразумевают, что можно пренебречь только величиной деформации нити (увеличением ее длины), но нельзя пренебрегать силами упругости, приложенными к нити или действующими со стороны нити. На самом деле «абсолютно нерастяжимых нитей» нет: точные измерения показывают, что любая нить хоть немного, но растягивается.

Например, если в описанном выше опыте с грузом, подвешенным к пружине (см. рис. 15.1), заменить пружину «нерастяжимой нитью», то под весом груза нить растянется, хотя ее деформация и будет незаметной. А следовательно, будут присутствовать и все рассмотренные силы упругости. Роль силы упругости пружины будет играть сила натяжения нити, направленная вдоль нити.

3. Сделайте чертежи, соответствующие рисунку 15.1 (а, б, в), заменив пружину нерастяжимой нитью. Обозначьте на чертежах силы, действующие на нить и на груз.

4. Два человека тянут в противоположные стороны веревку с силой 100 Н каждый.
а) Чему равна сила натяжения веревки?
б) Изменится ли сила натяжения веревки, если один ее конец привязать к дереву, а за другой конец тянуть с силой 100 Н?

Природа сил упругости

Силы упругости обусловлены силами взаимодействия частиц, из которых состоит тело (молекул или атомов). Когда тело деформируют (изменяют его размеры или форму), расстояния между частицами изменяются. Вследствие этого между частицами возникают силы, стремящиеся вернуть тело в недеформированное состояние. Это и есть силы упругости.

2. Закон Гука

Поставим опыт

Будем подвешивать к пружине одинаковые гирьки. Мы заметим, что удлинение пружины пропорционально числу гирек (рис. 15.3).

Это означает, что деформация пружины прямо пропорциональна силе упругости .

Обозначим деформацию (удлинение) пружины

x = l – l 0 , (1)

где l – длина деформированной пружины, а l 0 – длина недеформированной пружины (рис. 15.4). Когда пружина растянута, x > 0, а проекция действующей со стороны пружины силы упругости F x < 0. Следовательно,

F x = –kx. (2)

Знак «минус» в этой формуле напоминает, что приложенная со стороны деформированного тела сила упругости направлена противоположно деформации этого тела: растянутая пружина стремится сжаться, а сжатая – растянуться.

Коэффициент k называют жесткостью пружины . Жесткость зависит от материала пружины, ее размеров и формы. Единица жесткости 1 Н/м.

Соотношение (2) называют законом Гука в честь английского физика Роберта Гука, открывшего эту закономерность. Закон Гука справедлив при не слишком большой деформации (величина допустимой деформации зависит от материала, из которого изготовлено тело).

Формула (2) показывает, что модуль силы упругости F связан с модулем деформации x соотношением

Из этой формулы следует, что график зависимости F(x) – отрезок прямой, проходящий через начало координат.

5. На рисунке 15.5 приведены графики зависимости модуля силы упругости от модуля деформации для трех пружин.
а) У какой пружины наибольшая жесткость?
б) Чему равна жесткость самой мягкой пружины?


6. Груз какой массы надо подвесить к пружине жесткостью 500 Н/м, чтобы удлинение пружины стало равным 3 см?

Важно отличать удлинение пружины x от ее длины l. Различие между ними показывает формула (1).

7. Когда к пружине подвешен груз массой 2 кг, ее длина равна 14 см, а когда подвешен груз массой 4 кг, длина пружины равна 16 см.
а) Чему равна жесткость пружины?
б) Чему равна длина недеформированной пружины?

3. Соединение пружин

Последовательное соединение

Возьмем одну пружину жесткостью k (рис, 15.6, а). Если растягивать ее силой (рис. 15.6, б), ее удлинение выражается формулой


Возьмем теперь вторую такую же пружину и соединим пружины, как показано на рисунке 15.6, в. В таком случае говорят, что пружины соединены последовательно.

Найдем жесткость k посл системы из двух последовательно соединенных пружин.

Если растягивать систему пружин силой , то сила упругости каждой пружины будет равна по модулю F. Общее же удлинение системы пружин будет равно 2x, потому что каждая пружина удлинится на x (рис. 15.6, г).

Следовательно,

k посл = F/(2x) = ½ F/x = k/2,

где k – жесткость одной пружины.

Итак, жесткость системы из двух одинаковых последовательно соединенных пружин в 2 раза меньше, чем жесткость каждой из них.

Если последовательно соединить пружины с разной жесткостью, то силы упругости пружин будут одинаковы. А общее удлинение системы пружин равно сумме удлинений пружин, каждое из которых можно рассчитать с помощью закона Гука.

8. Докажите, что при последовательном соединении двух пружин
1/k посл = 1/k 1 + 1/k 2 , (4)
где k 1 и k 2 – жесткости пружин.

9. Чему равна жесткость системы двух последовательно соединенных пружин жесткостью 200 Н/м и 50 Н/м?

В этом примере жесткость системы двух последовательно соединенных пружин оказалась меньше, чем жесткость каждой пружины. Всегда ли это так?

10. Докажите, что жесткость системы двух последовательно соединенных пружин меньше жесткости любой из пружин, образующих систему.

Параллельное соединение

На рисунке 15.7 слева изображены параллельно соединенные одинаковые пружины.

Обозначим жесткость одной пружины k, а жесткость системы пружин k пар.

11. Докажите, что k пар = 2k.

Подсказка. См. рисунок 15.7.

Итак, жесткость системы из двух одинаковых параллельно соединенных пружин в 2 раза больше жесткости каждой из них.

12. Докажите, что при параллельном соединении двух пружин жесткостью k 1 и k 2

k пар = k 1 + k 2 . (5)

Подсказка. При параллельном соединении пружин их удлинение одинаково, а сила упругости, действующая со стороны системы пружин, равна сумме их сил упругости.

13. Две пружины жесткостью 200 Н/м и 50 Н/м соединены параллельно. Чему равна жесткость системы двух пружин?

14. Докажите, что жесткость системы двух параллельно соединенных пружин больше жесткости любой из пружин, образующих систему.


Дополнительные вопросы и задания

15. Постройте график зависимости модуля силы упругости от удлинения для пружины жесткостью 200 Н/м.

16. Тележку массой 500 г тянут по столу с помощью пружины жесткостью 300 Н/м, прикладывая силу горизонтально. Трением между колесами тележки и столом можно пренебречь. Чему равно удлинение пружины, если тележка движется с ускорением 3 м/с 2 ?

17. К пружине жесткостью k подвешен груз массой m. Чему равно удлинение пружины, когда груз покоится?

18. Пружину жесткостью k разрезали пополам. Какова жесткость каждой из образовавшихся пружин?

19. Пружину жесткостью k разрезали на три равные части и соединили их параллельно. Какова жесткость образовавшейся системы пружин?

20. Докажите, что жесткость и последовательно соединенных одинаковых пружин в n раз меньше жесткости одной пружины.

21. Докажите, что жесткость n параллельно соединенных одинаковых пружин в n раз больше жесткости одной пружины.

22. Если две пружины соединить параллельно, то жесткость системы пружин равна 500 Н/м, а если эти же пружины соединить последовательно, то жесткость системы пружин равна 120 Н/м. Чему равна жесткость каждой пружины?

23. Находящийся на гладком столе брусок прикреплен к вертикальным упорам пружинами жесткостью 100 Н/м и 400 Н/м (рис. 15.8). В начальном состоянии пружины не деформированы. Чему будет равна действующая на брусок сила упругости, если его сдвинуть на 2 см вправо? на 3 см влево?

Продолжаем обзор некоторых теми из раздела «Механика». Наша сегодняшняя встреча посвящена силе упругости.

Именно эта сила лежит в основе работы механических часов, её воздействию подвергаются буксирные канаты и тросы подъемных кранов, амортизаторы автомобилей и железнодорожных составов. Её испытывает мяч и теннисный шарик, ракетка и другой спортивный инвентарь. Как возникает эта сила, и каким закономерностям подчиняется?

Как рождается сила упругости

Метеорит под действием земного тяготения падает на землю и… замирает. Почему? Разве земное тяготение исчезает? Нет. Сила не может исчезнуть просто так. В момент соприкосновения с землей уравновешивается другой силой равной ей по величине и противоположной по направлению. И метеорит, как и другие тела на поверхности земли, остается в покое.

Этой уравновешивающей силой является сила упругости.

Такие же упругие силы появляются в теле при всех видах деформации:

  • растяжения;
  • сжатия;
  • сдвига;
  • изгиба;
  • кручения.

Силы, возникающие в результате деформации, называются упругими.

Природа силы упругости

Механизм возникновение сил упругости удалось объяснить лишь в XX веке, когда была установлена природа сил межмолекулярного взаимодействия. Физики назвали их «гигантом с короткими руками». Каков смысл этого остроумного сравнения?

Между молекулами и атомами вещества действуют силы притяжения и отталкивания. Такое взаимодействие обусловлено, входящими в их состав мельчайших частиц, несущих положительные и отрицательные заряды. Силы эти достаточно велики (отсюда слово гигант), но проявляются лишь на очень малых расстояниях (с короткими руками). При расстояниях равных утроенному диаметру молекулы, эти частицы притягиваются, «радостно» устремляясь, друг к другу.

Но, соприкоснувшись, начинают активно отталкиваться друг от друга.

При деформации растяжения расстояние между молекулами возрастает. Межмолекулярные силы стремятся его сократить. При сжатии молекулы сближаются, что порождает отталкивание молекул.

А, поскольку все виды деформаций можно свести к сжатию и растяжению, то появление упругих сил при любых деформациях объяснимо этими рассуждениями.

Закон, установленный Гуком

Изучением сил упругости и их взаимосвязью с другими физическими величинами занимался соотечественник и современник . Его считают основоположником экспериментальной физики.

Учёный продолжал свои эксперименты около 20 лет. Он проводил опыты по деформации растяжения пружин, подвешивая к ним различные грузы. Подвешиваемый груз вызывал растяжение пружины до тех пор, пока возникшая в ней сила упругости не уравновешивала вес груза.

В результате многочисленных экспериментов ученый делает вывод: приложенная внешняя сила вызывает возникновение равной ей по величине силе упругости, действующей в противоположном направлении.

Сформулированный им закон (закон Гука) звучит так:

Сила упругости, возникающая при деформации тела, прямо пропорциональна величине деформации и направлена в сторону, противоположную перемещению частиц.

Формула закона Гука имеет вид:

  • F - модуль, т. е. численное значение силы упругости;
  • х - изменение длины тела;
  • k - коэффициент жесткости, зависящий от формы, размеров и материала тела.

Знак минус указывает то, что сила упругости направлена в сторону противоположную смещению частиц.

Каждый физический закон имеет свои границы применения. Закон, установленный Гуком можно применять только к упругим деформациям, когда после снятия нагрузки форма и размеры тела полностью восстанавливаются.

У пластичных тел (пластилин, влажная глина) такого восстановления не происходит.

Упругостью в той или иной степени обладают все твёрдые тела. Первое место по упругости занимает резина, второе - . Даже очень упругие материалы при определенных нагрузках могут проявлять пластичные свойства. Это используют для изготовления проволоки, вырезания специальными штампами деталей сложной формы.

Если у вас есть ручные кухонные весы (безмен), то на них наверняка написан максимальный вес, на который они рассчитаны. Скажем 2 кг. При подвешивании более тяжелого груза, находящаяся в них стальная пружина уже никогда не восстановит свою форму.

Работа силы упругости

Как и любая сила, сила упругости, способна совершать работу. Причем очень полезную. Она предохраняет деформируемое тело от разрушения. Если она с этим не справляется, наступает разрушение тела. Например, разрывается трос подъёмного крана, струна на гитаре, резинка на рогатке, пружина на весах. Эта работа всегда имеет знак минус, поскольку сама сила упругости тоже отрицательна.

Вместо послесловия

Вооружившись некоторыми сведениями о силах упругости и деформациях, мы легко ответим на некоторые вопросы. Скажем, почему крупные кости у человека имеют трубчатое строение?

Изогните металлическую или деревянную линейку. Её выпуклая часть испытает деформацию растяжения, а вогнутая - сжатия. Средняя же часть нагрузки не несет. Природа и воспользовалась этим обстоятельством, снабдив человека и животных трубчатыми костями. В процессе движения кости, мышцы и сухожилья испытывают все виды деформаций. Трубчатое строение костей значительно облегчает их вес, абсолютно не влияя на их прочность.

Стебли злаковых культур имеют такое же строение. Порывы ветра пригибают их до земли, а силы упругости помогают выпрямиться. Кстати, рама у велосипеда тоже изготавливается из трубок, а не из стержней: вес намного меньше и металл экономится.

Закон, установленный Робертом Гуком, послужил основой для создания теории упругости. Расчёты, выполненные по формулам этой теории, позволяют обеспечить долговечность высотных сооружений и других конструкций .

Если это сообщение тебе пригодилось, буда рада видеть тебя