Домой / Новости  / Нелинейные колебания. Теория нелинейных колебаний. Обморшев А.Н. Введение в теорию колебаний

Нелинейные колебания. Теория нелинейных колебаний. Обморшев А.Н. Введение в теорию колебаний

Профессор, д. ф.м. н.

1. Введение

Переменные состояния. Оператор эволюции. Динамические системы (ДС). ДС с сосредоточенными и распределенными параметрами (ДССП и ДСРП). Математическая модель ДССП. Число степеней свободы. Обобщенные координаты и скорости. Фазовые пространства. Интегральные кривые и фазовые траектории. Классификация динамических систем. Методы теории нелинейных колебаний (классификация).

2. Колебания в линейных системах

Линейные автономные динамические системы с одной степенью свободы (линейный осциллятор). Фазовые портреты таких систем. Модели Ломки и Вольтерра. Плоскость параметров системы. Бифуркационные кривые. Неавтономные системы. Резонанс. Нормальные координаты. Колебания в линейных системах с двумя степенями свободы (связанные осцилляторы). Коэффициенты распределения, связанности и связи, графики Вина, внутренний резонанс. Вынужденные колебания в таких системах. Обобщение на n степеней свободы. Колебания в нормальных координатах. Параметрические колебания. Модели Хилла и Матье. Теорема Флоке.

3. Теория устойчивости ДС.

Понятие устойчивости по Ляпунову. Устойчивость равновесного состояния. Устойчивость периодического движения. Прямой метод Ляпунова. Метод первого приближения. Устойчивость линейных систем. Критерии устойчивости Рауса, Гурвица, Михайлова, Найквиста. Устойчивость неавтономных систем.

4. Аналитические методы

Особенности аналитических методов. Метод малого параметра Пуанкаре. Нерезонансные вынужденные колебания. Задача Дюффинга. Колебания при резонансе на основной гармонике и на субгармониках. Модель Дюффинга и нелинейный резонанс. Нелинейные фазовые колебания в циклических накопителях электронов. Собственные периодические колебания нелинейных систем. Вариационные методы. Метод Галеркина. Метод вариации параметров. Асимптотические методы. U-метод для автономных систем. Модель Ван-дер-Поля. Триодный генератор. Вращающаяся фазовая плоскость. Асимптотический метод для неавтономных систем. Эквивалентная линеаризация нелинейных систем. Метод усреднения. Перемещение Ван-дер-Поля. Нелинейный резонанс. Перекрытие нелинейных резонансов. Автоколебания в многочастотных системах. Вынужденная синхронизация. Конкуренция. Взаимная синхронизация мод.


5. Качественные методы

5.1. Фазовые портреты консервативных систем. Построение фазовых траекторий на основе энергетического баланса. Фазовые траектории в окрестности равновесного состояния. Типы движений в консервативных системах. Орбитная устойчивость. Неизохронность и ангармоничность нелинейных колебаний. Одночастичные движения в магнитной ловушке (электрон в продольном поле). Модель Вольтерра. Ансамбль нелинейных осцилляторов. Фазовый портрет перекрытия нелинейных резонансов.

5.2. Периодические автоколебания. Предельные циклы на фазовой плоскости. Зависимость формы автоколебаний от параметров системы. Релаксационные автоколебания. "Быстрые" и "медленные" движения. Качественные исследования разрывных колебаний. Модель релаксационного генератора.

5.3. Фазовые портреты равновесных диссипативных систем. Грубость динамической системы. Законы совместного существования особых точек. Основные бифуркации на плоскости. Индексы Пуанкаре. Обобщенная электронная схема с нелинейным элементом. Криотронные схемы. Триггерные ячейки памяти. Колебания в сверхпроводящих соленоидах.

6. Метод точечных преобразований.

Метод точечных преобразований при исследовании автоколебательных систем. Криотронный генератор. Гармонический осциллятор с нелинейным затуханием.

7. Применение качественных методов к исследованию неавтономных систем.

Синхронная многолистная фазовая плоскость. Субгармонические колебания в ферромагнитной пленке. Параметрическая неустойчивость. Бетатронные колебания в ускорителях с жесткой фокусировкой. Принцип автофазировки и синхротронные колебания в электронных ускорителях и накопителях.

8. Стохастическая динамика простых систем.

Точечные отображения. Бифуркация периодических движений. Гомоклинические структуры. Случайность в динамической системе. Стохастическая динамика одномерных отображений. Генератор шума, его статистическое описание. Пути возникновения странных аттракторов.

Литература

1. Мандельштам по колебаниям. М.: Наука, 1972.

2. , Хайкин колебаний. М.: Наука, 1964.

3. Стрелков в теорию колебаний. М.: Наука, 1964.

4. , Митропольский методы в теории нелинейных колебаний. М.: Наука, 1974.

5. Фомель теории нелинейных колебаний. Новосибирск: Изд-во НГУ, 1970.

6. Гольдин ускорителей. М.: Наука, 1983.

7. , Трубецков в теорию колебаний и волн. М.: Наука, 1984.

Далеко не при всяких колебаниях возвращающая сила пропорциональна отклонению (т. е. меняется по закону (- кх)). Рассмотрим, например, рессору, изображенную на рисунке 2.74. Она состоит из нескольких пластин. При небольших деформациях изгибаются только длинные пластины. При больших нагрузках изгибу подвергаются и более короткие (и более жесткие) пластины. Возвращающую силу теперь можно описать так:


бательный режим переходит в апериодический, когда колебания исчезают и тело просто медленно приближается к положению равновесия (рис. 2.72, б, в).

Введите вместо строки, где ставятся точки (t,x), строку, где будут ставиться точки (x,v ), и получите фазовые портреты затухающих колебаний при разном трении. Можно воспользоваться и одной из готовых программ Phaspdem* или Phport * из имеющихся в пакете ПАКПРО. Должны получаться диаграммы типа изображенных на рисунке 2.73.

Чтобы она была возвращающей, т. е. F и х всегда имели разные знаки, ее следует разложить в ряд по нечетным степеням х. Поскольку потенциальная энергия U связана с силой формулой F = - dU/dx , это означает, что

т. е. колебания происходят в потенциальной яме со стенками, более крутыми, чем у параболы (рис. 2.75, а). Трение пластин друг о друга обеспечивает затухание, необходимое для демпфирования колебаний.

Возможны колебания и в асимметричной яме, когда

(рис. 2.75, б). Возвращающая сила при этом будет равна

При решении задач на нелинейные колебания неизбежно использование компьютера, так как аналитических решений не существует. На компьютере же решение совсем не сложно. Нужно только в строке, где производится наращивание скорости (v = v + F At/m), полностью написать выражение для F, например -кх- гх 2 - рх 3 .

Пример. Программа для вычерчивания графика нелинейных колебаний приведена в пакете ПАКПРО под именем Nlkol. Запустите ее в работу. Должна получиться серия кривых для разных начальных отклонений. При х 0 большем некоторого значения колеблющаяся частица покидает потенциальную яму, преодолев потенциальный барьер.

Испытайте также работу программ Nlcol* и Nlosc.*, имеющихся в пакете ПАКПРО, а также программы, с помощью которых можно получить фазовые портреты нелинейных колебаний: Phaspnl.*, Phportnl*.

Отметим, что, строго говоря, почти любые колебания являются нелинейными. Только при малых амплитудах их можно считать линейными (пренебрегать членами с х 2 , х 3 и т. д. в формулах типа (2.117)).


Пусть на осциллятор, кроме возвращающей силы, обеспечивающей собственные колебания с частотой С0о, действует еще внешняя сила, причем меняющаяся периодически с частотой со, равной или не равной (Оо. Эта сила будет раскачивать тело с частотой со. Возникающие при этом колебания называются вынужденными.

Уравнение движения в этом случае будет таким:

Вначале происходит процесс установления колебаний. От первого толчка тело начинает колебаться с собственной частотой со 0 . Потом постепенно собственные колебания затухают, и вынуждающая сила начинает управлять процессом. Устанавливаются вынужденные колебания уже не с частотой (Оо, а с частотой вынуждающей силы со. Переходный процесс очень сложен, аналитического решения не существует. При решении задачи численным методом программа будет ничуть не сложнее, чем, скажем, программа для затухающих колебаний. Нужно только в строке, где в соответствии с уравнением движения производится наращивание скорости, добавить вынуждающую силу в виде FobiH = Focos(cot).

Пример. В пакете ПАКГ1РО дан пример программы для получения графика вынужденных колебаний на экране компьютера. См. также программы Ustvcol.pas и UstvcoW.pas. Получающийся график х(?) и фазовая диаграмма v(x) показаны на рисунке 2.76. При удачном подборе параметров хорошо видно, как постепенно устанавливаются вынужденные колебания. Установление вынужденных колебаний интересно наблюдать также на фазовой диаграмме (программа Phpforc.pas).

Когда колебания с частотой со уже установились, можно найти решение уравнения (2.118) в виде


Здесь Жо - амплитуда установившихся колебаний. Если подставить (2.119) в (2.118), найдя предварительно производные по времени х" и х" и учитывая, что к = соо 2 тп, то оказывается, что (2.119) будет решением уравнения (2.118) при условии, что

Трение не учитывалось, коэффициент а полагался равным нулю. Видно, что амплитуда колебаний резко возрастает при приближении со к Сйо (рис. 2.77). Это явление носит название резонанса.

Если бы трения действительно не было, амплитуда при со = (Оо была бы бесконечно большой. Реально так не бывает. На том же рисунке 2.77 показано, как с увеличением трения меняется резонансная кривая. Но все же при совпадении со и соо амплитуда может стать в десятки и сотни раз больше, чем при со Ф СОо. В технике это явление опасно, так как вынуждающие колебания двигателя могут попасть в резонанс с собственной частотой каких-либо частей машины, и она может разрушиться.

Пер. с англ. Болдова Б. А. и Гусева Г. Г. Под редакцией В. Е. Боголюбова. - М.: Мир, 1968. - 432 с.
Удк 534 (Механические колебания. Акустика). Есть текстовый слой (т. е. легко копируется текст).
Монография известного японского ученого Т. Хаяси посвящена теории нелинейных колебательных процессов, происходящих в самых различных физических системах.
Книга представляет собой переработанное и дополненное издание одной из более ранних работ автора, знакомой советскому читателю по русскому переводу (Хаяси Т., Вынужденные колебания в нелинейных системах, Ил, М. , 1957). Однако после переработки и дополнения получилась фактически новая книга.
Она отличается от предыдущей не только новыми разделами, но и значительно усовершенствованной методикой изложения. Книга представляет интерес как для физиков и инженеров различных специальностей, имеющих дело с теорией нелинейных колебаний и ее приложениями, так и для математиков, занимающихся теорией дифференциальных уравнений.
Оглавление.
Предисловие к русскому изданию.
Предисловие.
Введение.
Часть i. Основные методы анализа нелинейных колебаний.
Глава i.
Аналитические методы.
Введение.
Метод возмущений.
Метод итераций.
Метод усреднения.
Принцип гармонического баланса.
Численные примеры решения уравнения Дуффинга.
Глава ii.
Топологические методы и графические решения.
Введение.
Интегральные кривые и особые точки на плоскости состояний.
Интегральные кривые и особые точки в пространстве состояний.
Метод изоклин.
Метод Льенара.
Дельта-метод.
Метод наклонных прямых.
Глава iii.
Устойчивость нелинейных систем.
Определение устойчивости по Ляпунову.
Критерий Рауса - Гурвица для нелинейных систем.
Критерий устойчивости по Ляпунову.
Устойчивость периодических колебаний.
Уравнение Матье.
Уравнение Хилла.
Улучшенное приближение характеристического показателя для.
уравнения Хилла.
Часть ii, Вынужденные колебания в установившемся режиме.
Глава iy.
Устойчивость периодических колебаний в системах второго порядка.
Введение.
Условие устойчивости периодических решений.
Улучшенные условия устойчивости.
Дополнительные замечания об условиях устойчивости.
Глава y.
Гармонические колебания.
Гармонические колебания при симметричной нелинейной характеристике.
Гармонические колебания при несимметричной нелинейной характеристике.

Глава Yi.
Ультрагармонические колебания.
Ультрагармонические колебания в.
последовательно-резонансных цепях.
Экспериментальное исследование.
Ультрагармонические колебания в параллельно-резонансных цепях.
Экспериментальное исследование.
Глава Yii.
Субгармонические колебания.
Введение.
Связь между нелинейной характеристикой и порядком.
субгармонических колебаний.

характеристике, представленной кубической функцией.
Субгармонические колебания порядка 1/3 при нелинейной.
характеристике, представленной полиномом пятой степени.
Экспериментальное исследование.

характеристике, представленной полиномом третьей степени.
Субгармонические колебания порядка 1/2 при нелинейной.
характеристике, представленной симметричной квадратичной.
функцией.
Экспериментальное исследование.
Часть iii. Переходные процессы вынужденных колебаний.
Глава Yiii.
Гармонические колебания.
Введение.
Периодические решения и их устойчивость.
Анализ гармонических колебаний с помощью интегральных.
кривых.
Анализ гармонических колебаний на фазовой плоскости.
Геометрический анализ интегральных кривых для консервативных систем.
Геометрический анализ интегральных кривых для диссипативных систем.
Экспериментальное исследование.
Глава ix.
Субгармонические колебания.
Анализ субгармонических колебаний с помощью интегральных кривых.
Анализ субгармонических колебаний порядка 1/3 на фазовой плоскости.
Экспериментальное исследование.
Субгармонические колебания порядка 1/5.
Субгармонические колебания порядка 1/2.
Анализ субгармонических колебаний порядка 1/2 на фазовой.
плоскости.
Исследование на аналоговой вычислительной машине.
Глава x.
Начальные условия, приводящие к различным видам.
периодических колебаний.
Метод анализа.
Симметричные системы.

колебаний порядка 1/3.
Несимметричные системы.
Области притяжения для гармонических и субгармонических.
колебаний порядков 1/2 и 1/3.
Экспериментальные исследования.
Глава Xi.

Введение.
Почти периодические колебания в резонансной цепи с подмагничиванием постоянным током.
Оглавление.
Экспериментальное исследование.
Почти периодические колебания в параметрически.
возбуждаемой цепи.
Часть iv. Автоколебательные системы при периодическом воздействии внешней силы.
Глава Xii.
Захватывание частоты.
Введение.

Гармоническое захватывание.
Ультрагармоническое захватывание.
Субгармоническое захватывание.
Области захватывания частоты.
Анализ при помощи аналоговой вычислительной машины.

Автоколебательная система при нелинейной восстанавливающей силе.
Глава Xiii.
Почти периодические колебания.
Уравнение Ван-дер-Поля с вынуждающим членом.

гармонических колебаний.
Геометрическое рассмотрение интегральных кривых на.
границе гармонического захватывания.
Почти периодические колебания, возникающие из.
ультрагармонических колебаний.
Почти периодические колебания, возникающие из.
субгармонических колебаний.
Автоколебательная система с нелинейной восстанавливающей силой.
Приложение i. Разложения функций Матье.
Приложение ii. Неустойчивые решения уравнения Хилла.
Приложение iii. Неустойчивые решения обобщенного уравнения Хилла.
Приложение iv. Критерий устойчивости, полученный с помощью метода.
возмущений.
Приложение v. Замечания, касающиеся интегральных кривых и особых точек.
Приложение Vi. Электронный синхронный коммутатор.
Задачи.
Литература.
Указатель.
Т. Хаяси.
Нелинейные колебания в физических системах.

Редактор Н. Плужнакова Художник А. Шкловская.
Художественный редактор В. Шаповалов Технический редактор Н. Турсукова.
Сдано в производство 9/Х 1967 г. Подписано к печати 25/Ш 1968 г.
Бумага 60х90у1в-= 13,5 бум. л. 27,0 печ. л.
Уч. -изд. л. 24,
0. Изд. № 1/3899.
Цена 1 р. 91 к. Зак. 907.
Темплан 1968 г. изд-ва «Мир», пор. № 38.
Издательство "Мир", Москва, 1-й Рижский пер. , 2.
Ленинградская типография № 2 имени Евгении Соколовой Главполиграфпрома Комитета.
по печати при Совете Министров Ссср. Измайловский пр. , 29.

Смотрите также

Андрианов И.В., Данишевский В.В., Иванков А.О. Асимптотические методы в теории колебаний балок и пластин

  • формат файла: pdf
  • размер: 5.53 МБ
  • добавлен: 25 сентября 2011 г.

Днепропетровск: Приднепровская государственная академия строительства и архитектуры, 2010 г., 217 с. В монографии рассматриваются асимптотические методы решения задач колебаний балок и пластин. Основное внимание уделено гомотопическому методу возмущений, который основывается на введении искусственного малого параметра. Исследованы линейные колебания конструкций со смешанными граничными условиями, а также нелинейные колебания систем с распределен...

Вибрации в технике. Том 6. Защита от вибрации и ударов

  • формат файла: djvu
  • размер: 7.28 МБ
  • добавлен: 27 октября 2009 г.

Фролов К. В. В шестом томе изложены методы снижения виброактивности источников колебаний и настройки динамических гасителей. Рассмотрены вопросы балансировки вращающихся деталей машин, уравновешивания машин и механизмов, выбора рациональных законов перемещения рабочих органов машин, изоляции оборудования и основания, а также проблемы защиты человека от вибрации. Справочник предназначен для инженерно-технических работников, занятых расчетами, пр...

Ганиев Р.Ф., Кононенко В.О. Колебания твердых тел

  • формат файла: djvu
  • размер: 8.89 МБ
  • добавлен: 27 октября 2011 г.

М.:Наука,1976, 432 с. Исследованы нелинейные колебания в пространственном движении, в частности условия возникновения резонансов. Работа актуальна при создании систем амортизации авиационной и космической техники. Ганиев Р. Ф. - акад. РАН, Кононенко В. О. - акад. АН Украины. Амортизатор упругий 39 Виброамортизация 145, 41, 7 Виброизоляция 145, 417 Возбуждение кинематическое 134, 358 Гирорама двухосная 343 Гирорама трехосная 353 Гироскоп астатичес...

Ден-Гартог Д.П. Механические колебания

  • формат файла: djvu
  • размер: 7.5 МБ
  • добавлен: 25 мая 2010 г.

М. Физматгиз. 1960г. 574 с. Кинематика колебаний. Системы с одной степенью свободы. Две степени свободы. Системы с произвольным числом степеней свободы. Многоцилиндровые двигатели. Вращающиеся части машин. Автоколебания. Квазигармонические и нелинейные колебания систем.

Мигулин В.В. Основы теории колебаний

  • формат файла: djvu
  • размер: 3.88 МБ
  • добавлен: 10 января 2010 г.

Книга знакомит читателя с общими свойствами колебательных процессов, происходящих в радиотехнических, оптических и других системах, а также с различными качественными и количественными методами их изучения. Значительное внимание уделено рассмотрению параметрических, автоколебательных и других нелинейных колебательных систем. Изучение описанных в книге колебательных систем и процессов в них приведено известными методами теории колебаний без подроб...

Обморшев А.Н. Введение в теорию колебаний

  • формат файла: pdf
  • размер: 8.75 МБ
  • добавлен: 23 февраля 2010 г.

НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ

Нелинейность процессов, в том числе и колебаний, математически выражается в нелинейности соответствующих уравнений движения. С точки зрения физики нелинейность колебаний характеризуется двумя совершенно различными свойствами: ангармоничностью и неизохронностью. Под ангармоничностью понимают наличие в спектре колебаний частот, кратных основной, - Фурье-гармоник, или обертонов. Неизохронными называются колебания, частоты (основной и высших гармоник) которых зависят от амплитуды или энергии колебаний.

Классическим примером нелинейных колебаний может служить обращение планет вокруг Солнца - задача, с решения которой начались современные механика и физика. По третьему закону Кеплера, частота со обращения планет вокруг Солнца задаётся их полной энергией:

w=│E │ 3/2 .

Неизохронность, вообще говоря, не связана с ангармоничностью. Так, заряженная частица, движущаяся по круговой орбите в постоянном магнитном поле со скоростью, близкой к скорости света, совершает колебания чисто гармонические, а частота её обращения обратно пропорциональна энергии.

НЕЛИНЕЙНЫЙ ОСЦИЛЛЯТОР

Линейный (в отсутствие затухания - гармонический) осциллятор - основная модель линейной теории колебаний. Его уравнение движения (по второму закону Ньютона):

где х - величина, колебания которой описывает модель (амплитуда смещения маятника, ток или напряжение в колебательном контуре, численность популяции и т. д.),- её «ускорение».

Нелинейный осциллятор - основная модель нелинейной теории колебаний. Его уравнение движения:

где f (.х ) - нелинейная функция, содержащая по крайней мере один нелинейный (не первой степени по х ) член. Полная энергия системы не зависит от времени, т. е. система консервативна.

Неизохронные колебания совершает, например, частица в плоской потенциальной яме - ящике с бесконечно высокими стенками:

U(x) =0 при - l / 2<х< l / 2; U(х) =¥ при х £- l / 2, х >l / 2.

Частица движется с постоянной скоростью внутри ящика, мгновенно упруго отражаясь на границах. Её кинетическая энергия Е к = mv 2 /2, т. е. скорость V = Ö (2Е к / m ) зависит от энергии. Период колебаний частицы выражается формулой

Из формулы (3) видно, что период колебаний убывает с ростом энергии (для других систем он может возрастать).

Закон сохранения энергии Е осциллятора (консервативной нелинейной системы) имеет вид

Полную качественную картину движения нелинейного осциллятора даёт его фазовый портрет. Из закона сохранения энергии можно вывести

ЛЕОНИД ИСААКОВИЧ МАНДЕЛЬШТАМ

Даже неполный перечень открытий и фундаментальных работ академика Леонида Исааковича Мандельштама (1879-1944) поражает разнообразием: комбинационное и флуктуационное рассеяние света, теория микроскопа, нелинейные колебания и радиотехника, теория резонансов, радиогеодезия, новый вид генераторов электромагнитных волн - параметрические машины. Исключительная, чтобы не сказать болезненная, требовательность Л. И. Мандельштама к результатам работы не позволила включить в этот перечень ряд других, не менее важных открытий, - например, экспериментальное обнаружение в 1912 г. (за несколько лет до классических опытов Стюарта и Толмена) инерции электронов в металлах.

Но за всем впечатляющим разнообразием достижений и широтой интересов в научном творчестве Мандельштама отчётливо прослеживается главная тема - теория колебаний. Впервые познакомившись с этой областью по двухтомной «Теории звука» лорда Рэлея, Мандельштам проникся красотой её идей и неоднократно прибегал к «колебательной помощи», позволявшей находить аналогии между результатами из разных разделов физики.

В Мандельштаме счастливо воплотилось редкое сочетание теоретика и экспериментатора, исследователя и лектора. Он говорил, что существует понимание первого рода, когда читают и понимают всё, что написано, могут вывести любую формулу, но ещё не способны самостоятельно ответить на любой вопрос из прочитанного, и понимание второго рода, когда ясна вся картина, вся связь идей, явлений. Глубокий и тонкий мыслитель, Мандельштам достиг понимания второго рода всей физики и щедро делился знаниями с многочисленными учениками (среди них А. А. Андронов, А. А. Витт, Г. С. Горелик, Г. С. Ландсберг, М. А. Леонтович, В. В. Мигулин, С. М. Рытов, С. П. Стрелков, И. Е. Тамм, С. Э. Хайкин, С. П. Шубин и др.) и студентами.

Родился Мандельштам в Могилёве в семье, давшей миру учёных, врачей и писателей. Вскоре семья переехала в Одессу. До 12 лет мальчик учился дома, затем в гимназии, которую окончил с золотой медалью. В 1897 г. он поступил на математическое отделение физико-математического факультета Новороссийского университета (в Одессе). Через два года в связи со студенческими волнениями юношу исключили из университета. По совету родителей Мандельштам уехал в Страсбург, один из центров физических исследований, где и продолжил образование. В Страсбургском университете тогда преподавали математик Генрих Вебер (ученик Римана и автор классического курса «Дифференциальные уравнения математической физики»), физик Фердинанд Браун (по совместительству директор Физического института), кафедрой теоретической физики заведовал Эмиль Кон (автор известного труда «Электромагнитное поле»).

Колебания в физич. системах, описываемые нелинейными системами обыкновенных дифференциальных уравнений

где содержит члены не ниже 2-й степени по компонентам вектора - вектор-функция времени - малый параметр (либо и ). Возможные обобщения связаны с рассмотрением разрывных систем, воздействий с разрывными характеристиками (напр., типа гистерезиса), запаздывания и случайных воздействий, интегро-дифференциальных и дифференциально-операторных уравнений, колебательных систем с распределенными параметрами, описываемыми дифференциальными уравнениями с частными производными, а также с использованием методов оптимального управления нелинейными колебательными системами. Основные общие задачи Н. к.: отыскание положений равновесия, стационарных режимов, в частности периодич. движений, автоколебаний и исследование их устойчивости, проблемы синхронизации и стабилизации Н. к.

Все физич. системы, строго говоря, являются нелинейными. Одна из наиболее характерных особенно--стей Н. к.- это нарушение в них принципа суперпозиции колебаний: результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия другого воздействия.

Квазилинейные системы - системы (1) при . Основным методом исследования является малого параметра метод. Прежде всего это метод Пуанкаре - Линдштедта определения переодич. решений квазилинейных систем, аналитических по параметру при его достаточно малых значениях, либо в виде рядов по степеням (см. гл. IX), либо в виде рядов по степеням и - добавок к начальным значениям компонент вектора (см. гл. III). О дальнейшем развитии этого метода см., напр., в - .

Другим из методов малого параметра является метод осреднения. Вместе с тем в исследование квазилинейных систем проникали и новые методы: асимптотич. методы (см. , ), метод К-функций (см. ), базирующийся на фундаментальных результатах А. М. Ляпунова - Н. Г. Четаева, и др.

Существенно нелинейные системы, в к-рых отсутствует заранее предписываемый малый параметр . Для систем Ляпунова

причем среди собственных чисел -матрицы нет кратных корню - аналитич. вектор-функция х, разложение к-рой начинается с членов не ниже 2-го порядка, и имеет место аналитический первый интеграл специального вида, А. М. Ляпунов (см. § 42) предложил метод отыскания периодич. решений в виде ряда по степеням произвольной постоянной с(за к-рую может быть принято начальное значение одной из двух крнтич. переменных либо ).

Для систем, близких к системам Ляпунова,

где того же вида, что и в (2), - аналитич. вектор-функция и малого параметра , непрерывная и -периодическая по t, также предложен метод определения периодич. решений (см. гл. VIII). Системы типа Ляпунова (2), в к-рых матрица имеет lнулевых собственных значений с простыми элементарными делителями, два - чисто мнимых собственных значения и не имеет собственных значений, кратных - такая же, как и в (2), могут быть сведены к системам Ляпунова (см. IV.2). Исследовались также Н. к. в системах Ляпунова и в т. н. системах Ляпунова с демпфированием, а также решалась общая задача о перекачке энергии в них (см. гл. I, III, IV).

Пусть существенно нелинейная автономная система приведена к жорданову виду ее линейной части

где вектор по предположению имеет хотя бы одну ненулевую компоненту; , равны нулю или единице соответственно при отсутствии пли наличии непростых элементарных делителей матрицы линейной части,- коэффициенты; множество значений вектора с целочисленными компонентамп таково:

Тогда существует нормализующее преобразование:

приводящее (3) к нормальной форме дифференциальных уравнений

и такое, что , если . Таким образом, нормальная форма (5) содержит лишь резонансные члены, т. е. коэффициенты могут быть отличны от нуля лишь для тех , для к-рых выполнено резонансное уравнение

играющее существенную роль в теории колебаний. Сходимость и расходимость нормализующего преобразования (4) исследована (см. ч. I, гл. II, III); дано вычисление коэффициентов (посредством их симметризации) (см. § 5.3). В ряде задач о Н. к. существенно нелинейных автономных систем оказался эффективным метод нормальных форм (см. , гл. VI-VIII).

Из других методов исследования существенно нелинейных систем применяются метод точечных отображений (см. , ), стробосконич. метод и функционально-аналитич. методы .

Качественные методы Н. к. Исходными здесь являются исследования вида интегральных кривых нелинейных обыкновенных дифференциальных уравнений, проведенные А. Пуанкаре (Н. Poincare, см. ). Приложения для задач Н. к., описываемых автономными системами 2-го порядка см. в , . Изучены вопросы существования периодич. решений и их устойчивости в большом для многомерных систем; рассмотрены почти периодические Н. к. Приложения теории обыкновенных дифференциальных уравнений с малым параметром при нек-рых производных к задачам релаксационных Н. к. см. в .

Важные аспекты Н. к. и лит. см. в статьях Возмущений теория, Колебаний теория.

Лит. : Пуанкаре А., Избр. труды, пер. с франц., т. 1, М., 1971; Андронов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Булгаков Б. В., Колебания, М., 1954; Малкин И. Г., Некоторые задачи теории нелинейных колебаний, М., 1956: Боголюбов Н. Н., Избр. труды, т. 1, К., 1969; [б] Боголюбов Н. Н., Митропольский Ю. А., Асимптотические методы в теории нелинейных колебаний, 4 изд., М-, 1974; Каменков Г. В., Избр. труды, т. 1-2, М., 1971-72; Ляпунов А. М., Собр. соч., т. 2, М.- Л., 195В, с. 7-263; Старжинский В. М., Прикладные методы нелинейных колебаний, М., 1977; Брюно А. Д., "Тр. Моск. матем. об-ва", 1971, т. 25, с. 119-262; 1972, т. 26, с. 199-239; Неймарк Ю. И., Метод точечных отображений в теории нелинейных колебаний, М., 1972; Мinorsky N., Introduction to non-linear mechanics, Ann Arbor, 1947; Красносельский М. А., Бурд В. Ш., Колесов Ю. С, Нелинейные почти периодические колебания, М., 1970; Пуанкаре А., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М. -Л., 1947; Бутенин Н. В., Неймарк Ю. И., Фуфаев Н. А., Введение в теорию нелинейных колебаний, М., 1976; Плисе В. А., Нелокальные проблемы теории колебаний, М. -Л., 1964; Мищенко Е. Ф., Розов Н. X., Дифференциальные уравнения с малым параметром и релаксационные колебания, М., 1975.

  • - движения или процессы, обладающие той или иной степенью повторяемости во времени...

    Физическая энциклопедия

  • - тензорные коэффициенты, связывающие нелинейную часть поляризации Р = Р л + Р нл единичного объёма среды, возникающую под действием сильных электрических полей, с величинами...

    Физическая энциклопедия

  • - изменения сигнала S вых, приводящие к искажению передаваемого сообщения S вх, обусловленные нелинейностью оператора тракта передачи L: S вых = LS вх...

    Физическая энциклопедия

  • - процессы в колебат. и волновых системах, не удовлетворяющие суперпозиции принципу...

    Физическая энциклопедия

  • - колебательные системы, св-ва к-рых зависят от происходящих в них процессов. Колебания таких систем описываются нелинейными ур-ниями. Нелинейными явл.: механич...

    Физическая энциклопедия

  • - ур-ния, не обладающие свойством линейности...

    Физическая энциклопедия

  • - возникают в результате взаимодействия волн, полей и частиц, при к-рых не выполняется принцип суперпозиции волн и к-рые описываются с учётом нелинейных слагаемых в ур-ниях кинетики или...

    Физическая энциклопедия

  • - нелинейные оптич...

    Физическая энциклопедия

  • - колебат. и волновые системы, свойства к-рых зависят от происходящих в них процессов; описываются нелинейными диффсренц. ур-ниями. Одна из наиб. характерных особенностей Н.с.- нарушение принципа суперпозиции...

    Естествознание. Энциклопедический словарь

  • - системы, свойства и характеристики которых зависят от их состояния. Среди них могут быть механические и электрические колебательные системы, описываемые нелинейными дифференциальными уравнениями...

    Начала современного Естествознания

  • - движения или процессы, обладающие той или иной степенью повторяемости во времени - трептения - kmitání; kmity - Schwingungen - rezgés - хэлбэлзэл - wahania; drgania - oscilaţii - oscilacije - oscilaciones - oscillations; vibrations - oscillations...

    Строительный словарь

  • - Статьиволокно...

    Энциклопедический словарь нанотехнологий

  • - термин, который иногда употребляют, подразумевая колебания в нелинейных системах...
  • - Колебательные системы, свойства которых зависят от происходящих в них процессов...

    Большая Советская энциклопедия

  • «КОЛЕБАНИЯ» ОПРЕДЕЛЕНИЙ

    Из книги Как говорить правильно: Заметки о культуре русской речи автора Головин Борис Николаевич

    «КОЛЕБАНИЯ» ОПРЕДЕЛЕНИЙ На уроке учащимся было задано упражнение: ввести определение в словосочетание пять рабочих. Ученики быстро предложили свои примеры: пять молодых рабочих, пять старых рабочих, пять квалифицированных рабочих... Затруднений никаких не возникло.

    § 1 Экономические колебания

    Из книги Основы экономики автора Борисов Евгений Филиппович

    § 1 Экономические колебания При поиске истины мы наталкиваемся на парадокс (неожиданное явление, не соответствующее обычным представлениям).Как выглядит волнообразное движение экономикиЧтобы убедиться в том, что происходит в действительности, давайте посмотрим на

    Китайгородский Александр Исаакович

    V. Колебания Равновесие В некоторых случаях равновесие очень трудно поддержать – попробуйте пройтись по натянутому канату. В то же время никто не награждает аплодисментами сидящего в кресле-качалке. А ведь он тоже поддерживает свое равновесие.В чем же разница в этих

    Колебания

    Из книги Курс русской истории (Лекции XXXIII-LXI) автора Ключевский Василий Осипович

    Колебания Отвечая на этот вопрос, мы переберем все наиболее видные явления нашей внутренней жизни. Они очень сложны, идут различными, часто пересекающимися и иногда встречными течениями. Но можно разглядеть их общий