Домой / ПО / Элементы проявляющие низшую степень окисления. Основы химии: Степень окисления. Характерная степень окисления

Элементы проявляющие низшую степень окисления. Основы химии: Степень окисления. Характерная степень окисления

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Высшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Высшая степень окисления химического элемента обычно численно совпадает с номером группы в Периодической системе Д. И. Менделеева. Исключения составляют фтор (степень окисления равна -1, а элемент расположен в VIIA группе), кислород (степень окисления равна +2, а элемент расположен в VIA группе), гелий, неон, аргон (степень окисления равна 0, а элементы расположены в VIII группе), а также элементы подгруппы кобальта и никеля (степень окисления равна +2, а элементы расположены в VIII группе), для которых высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе (максимальная положительная степень окисления меди и серебра равна +2, золота +3).

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления серы в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • В сероводороде степень окисления серы равна (-2), а в простом веществе - сере - 0:

Изменение степени окисления серы: -2 → 0, т.е. шестой вариант ответа.

  • В простом веществе - сере — степень окисления серы равна 0, а в SO 3 - (+6):

Изменение степени окисления серы: 0 → +6, т.е. четвертый вариант ответа.

  • В сернистой кислоте степень окисления серы равна (+4), а в простом веществе - сере - 0:

1×2 +x+ 3×(-2) =0;

Изменение степени окисления серы: +4 → 0, т.е. третий вариант ответа.

ПРИМЕР 2

Задание Валентность III и степень окисления (-3) азот проявляет в соединении: а) N 2 H 4 ; б) NH 3 ; в) NH 4 Cl; г) N 2 O 5
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять валентность и степень окисления азота в предложенных соединениях.

а) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 4-м (1×4 = 4). Разделим полученное значение на число атомов азота в молекуле: 4/2 = 2, следовательно, валентность азота равна II. Этот вариант ответа неверный.

б) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 3-м (1×3 = 3). Разделим полученное значение на число атомов азота в молекуле: 3/1 = 2, следовательно, валентность азота равна III. Степень окисления азота в аммиаке равна (-3):

Это верный ответ.

Ответ Вариант (б)

Химия подготовка к ЗНО и ДПА
Комплексное издание

ЧАСТЬ И

ОБЩАЯ ХИМИЯ

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА

Степень окисления

Степень окисления - это условный заряд на атоме в молекуле или кристалле, который возник на нем, когда бы все полярные связи, созданные им, имели ионный характер.

На отличие от валентности, степени окисления может быть положительным, отрицательным или равняться нулю. В простых ионных соединениях степень окисления совпадает с зарядами ионов. Например, в натрий хлориде NaCl (Na + Cl - ) Натрий имеет степень окисления +1, а Хлор -1, в кальций оксиде СаО (Са +2 О -2) Кальций проявляет степень окисления +2, а Оксисен - -2. Это правило распространяется на все основные оксиды: степень окисления металлического элемента равен заряду иона металла (Натрия +1, Бария +2, Алюминия +3), а степень окисления Кислорода равна-2. Степень окисления обозначают арабскими цифрами, которые ставят над символом элемента, подобно валентности, причем вначале указывают знак заряда, а потом его численное значение:

Если модуль степени окисления равна единице, то число «1» можно не ставить и писать только знак: Na + Cl - .

Степень окисления и валентность - родственные понятия. Во многих соединениях абсолютная величина степени окисления элементов совпадает с их валентностью. Однако существует немало случаев, когда валентность отличается от степени окисления.

В простых веществах - неметалах существует ковалентная неполярная связь, совместная электронная пара смещается к одному из атомов, поэтому степень окисления элементов в простых веществ всегда равна нулю. Но атомы друг с другом связаны, то есть проявляют определенную валентность, как, например, в кислороде валентность Кислорода равна II, а в азоте валентность Азота - III:

В молекуле водород пероксида валентность Кислорода также равна II, а Водорода - И:

Определение возможных степеней окисления элементов

Степени окисление, какие элементы могут проявлять в различных соединениях, в большинстве случаев можно определить по строению внешнего электронного уровня или по местом элемента в Периодической системе.

Атомы металлических элементов могут только отдавать электроны, поэтому в соединениях они проявляют положительные степени окисления. Его абсолютное значение во многих случаях (за исключением d -элементов) равен числу электронов на внешнем уровне, то есть номера группы в Периодической системе. Атомы d -элементов могут также отдавать электроны с передзовнішнього уровня, а именно - с незаполненных d -орбиталей. Поэтому для d -элементов определить все возможные степени окисления значительно сложнее, чем для s - и р-элементов. С уверенностью можно утверждать, что большинство d -элементов проявляют степень окисления +2 благодаря электронам внешнего электронного уровня, а максимальная степень окисления в большинстве случаев равен номеру группы.

Атомы неметаллических элементов могут проявлять как положительные, так и отрицательные степени окисление, в зависимости от того, с атомом какого элемента они образуют связь. Если элемент более электроотрицательным, то он проявляет негативное степень окисления, а если менее электроотрицательный - положительный.

Абсолютное значение степени окисления неметаллических элементов можно определить по строению внешнего электронного слоя. Атом способен принять столько электронов, чтобы на его внешнем уровне расположилось восемь электронов: неметаллические элементы VII группы принимают один электрон и проявляют степень окисления -1, VIгруппы - два электроны и проявляют степень окисления -2 и т.д.

Неметаллические элементы способны отдавать разное число электронов: максимум столько, сколько расположено на внешнем энергетическом уровне. Иначе говоря, максимальный степень окисления неметаллических элементов равна номеру группы. Благодаря промотуванню электронов на внешнем уровне атомов число неспаренных электронов, которые атом может отдавать в химических реакциях, бывает разным, поэтому неметаллические элементы способны обнаруживать различные промежуточные значения степени окисления.

Возможны степени окисления s - и р-элементов

Группа ПС

Высшую степень окисления

Промежуточный степень окисления

Ниже степень окисления

Определение степеней окисления в соединениях

Любая электронейтральная молекула, поэтому сумма степеней окисления атомов всех элементов должна равняться нулю. Определим степень окисления в сульфур(И V ) оксиде SO 2 тауфосфор(V ) сульфіді P 2 S 5 .

Сульфур(И V ) оксид SO 2 образован атомами двух элементов. Из них электроотрицательности большая у Кислорода, поэтому атомы Кислорода будут иметь негативный степень окисления. Для Кислорода он равен-2. В этом случае Сульфур оказывает положительное степень окисления. В различных соединениях Сульфур может проявлять разные степени окисления, поэтому в этом случае его необходимо вычислить. В молекуле SO 2 два атома Кислорода со степенью окисления -2, поэтому общий заряд атомов Кислорода равна-4. Для того, чтобы молекула была електронейтральною, атом Серы имеет полностью нейтрализовать заряд обоих атомов Кислорода, поэтому степень окисления Серы равна +4:

В молекуле фосфор(V ) сульфида P 2 S 5 более електронегативним элементом является Сульфур, то есть он проявляет негативное степень окисления, а Фосфор - положительный. Для Серы негативный степень окисления составляет только 2. Вместе пять атомов Серы несут отрицательный заряд, равный-10. Поэтому два атома Фосфора имеют нейтрализовать этот заряд с общим зарядом +10. Поскольку атомов Фосфора в молекуле два, то каждый должен иметь степень окисления +5:

Сложнее вычислять степень окисления не в бинарных соединениях - солях, основаниях и кислотах. Но для этого также следует воспользоваться принципом электронейтральности, а еще помнить о том, что в большинстве соединений степень окисления Кислорода составляет -2, Водорода +1.

Рассмотрим это на примере калий сульфата K 2 SO 4 . Степень окисления Калия в соединениях может быть только +1, а Кислорода -2:

С принципа электронейтральности вычисляем степень окисления Серы:

2(+1) + 1 (х) + 4 (-2) = 0, откуда х = +6.

При определении степеней окисления элементов в соединениях следует придерживаться таких правил:

1. Степень окисления элемента в простом веществе равна нулю.

2. Фтора - наиболее электроотрицательный химический элемент, поэтому степень окисления Фтора в всех соединениях равна-1.

3. Оксиген - наиболее электроотрицательный элемент после Фтора, поэтому степень окисления Кислорода во всех соединениях, кроме фторидов, отрицательный: в большинстве случаев он равна -2, а в пероксидах - -1.

4. Степень окисления Водорода в большинстве соединений равна +1, а в соединениях с металлическими элементами (гидридах) - -1.

5. Степень окисления металлов в соединениях всегда положительный.

6. Более электроотрицательный элемент всегда имеет отрицательный степень окисления.

7. Сумма степеней окисления всех атомов в молекуле равна нулю.


Видеоурок 2: Степень окисления химических элементов

Видеоурок 3: Валентность. Определение валентности

Лекция: Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность


Электроотрицательность – это способность атомов притягивать к себе электроны других атомов для соединения с ними.

Судить об электроотрицательности того или иного химического элемента легко по таблице. Вспомните, на одном из наших уроков было сказано о том, что она возрастает при движении слева направо по периодам в таблице Менделеева и с перемещением снизу вверх по группам.

К примеру, дано задание определить какой элемент из предложенного ряда наиболее электроотрицателен: C (углерод), N (азот), O (кислород), S (сера)? Смотрим по таблице и находим, что это О, потому что он правее и выше остальных.


Какие же факторы оказывают влияние на электроотрицательность? Это:

  • Радиус атома, чем он меньше, тем электроотрицательность выше.
  • Заполненность валентной оболочки электронами, чем их больше, тем выше электроотрицательность.

Из всех химических элементов фтор является наиболее электроотрицательным, потому как у него малый атомный радиус и на валентной оболочке 7 электронов.


К элементам, имеющим низкую электроотрицательность, относятся щелочные и щелочноземельные металлы. У них большие радиусы и очень мало электронов на внешней оболочке.

Значения электроотрицательности атома не могут быть постоянными, т.к. она зависит от многих факторов в числе которых перечисленные выше, а также степень окисления, которая может быть различной у одного и того же элемента. Поэтому принято говорить об относительности значений электроотрицательности. Вы можете пользоваться следующими шкалами:




Значения электроотрицательности вам понадобятся при записи формул бинарных соединений, состоящих из двух элементов. К примеру, формула оксида меди Cu 2 O - первым элементом следует записывать тот, чья электроотрицательность ниже.


В момент образования химической связи если разница электроотрицательности между элементами больше 2,0 образуется ковалентная полярная связь, если меньше, ионная.

Степень окисления

Степень окисления (СО) – это условный или реальный заряд атома в соединении: условный – если связь ковалентная полярная, реальный – если связь ионная.

Атом приобретает положительный заряд при отдаче электронов, а отрицательный заряд – при принятии электронов.

Степени окисления записываются над символами со знаком «+»/«-» . Есть и промежуточные СО. Максимальная СО элемента положительная и равна № группы, а минимальная отрицательная для металлов равна нулю, для неметаллов = (№ группы – 8) . Элементы с максимальной СО только принимают электроны, а с минимальной, только отдают. Элементы же, имеющие промежуточные СО могут и отдавать и принимать электроны.


Рассмотрим некоторые правила, которыми стоит руководствоваться для определения СО:

    СО всех простых веществ равна нулю.

    Равна нулю и сумма всех СО атомов в молекуле, так как любая молекула электронейтральна.

    В соединениях с ковалентной неполярной связью СО равна нулю (О 2 0), а с ионной связью равна зарядам ионов (Na + Cl - СО натрия +1, хлора -1). СО элементов соединений с ковалентной полярной связью рассматриваются как с ионной связью (H:Cl = H + Cl - , значит H +1 Cl -1).

    Элементы в соединении, имеющие наибольшую электроотрицательность, имеют отрицательные степени окисления, если наименьшую положительные. Исходя из этого можно сделать вывод, что металлы имеют только «+» степень окисления.

Постоянные степени окисления :

    Щелочные металлы +1.

    Все металлы второй группы +2. Исключение: Hg +1, +2.

    Алюминий +3.

  • Водород +1. Исключение: гидриды активных металлов NaH, CaH 2 и др., где степень окисления водорода равна –1.

    Кислород –2. Исключение: F 2 -1 O +2 и пероксиды, которые содержат группу –О–О–, в которой степень окисления кислорода равна –1.

Когда образуется ионная связь, происходит определенный переход электрона, от менее электроотрицательного атома к атому большей электроотрицательности. Так же, в данном процессе, атомы всегда теряют электронейтральность и впоследствии превращаются в ионы. Так же образуются целочисленные заряды. При образовании ковалентной полярной связи, электрон переходит только частично, поэтому возникают частичные заряды.

Валентность

Валентность – это способность атомов образовать n - число химических связей с атомами других элементов.

А еще валентность – это способность атома удержать другие атомы возле себя. Как вам известно из школьного курса химии, разные атомы связываются друг с другом электронами внешнего энергетического уровня. Неспаренный электрон ищет для себя пару у другого атома. Эти электроны внешнего уровня называются валентными. Значит валентность можно определить и как число электронных пар, связывающих атомы друг с другом. Посмотрите структурную формулу воды: Н – О – Н. Каждая черточка – это электронная пара, значит показывает валентность, т.е. кислород здесь имеет две черточки, значит он двухвалентен, от молекул водорода исходят по одной черточке, значит водород одновалентен. При записи валентность обозначается римскими цифрами: О (II), Н (I). Может указываться и над элементом.


Валентность бывает постоянной либо переменной. К примеру, у щелочей металлов она постоянна и равняется I. А вот хлор в различных соединениях проявляет валентности I, III, V, VII.


Как определить валентность элемента?

    Вновь обратимся к Периодической таблице. Постоянная валентность у металлов главных подгрупп, так металлы первой группы имеют валентность I, второй II. А у металлов побочных подгрупп валентность переменная. Также она переменная и у неметаллов. Высшая валентность атома равна № группы, низшая равна = № группы - 8. Знакомая формулировка. Не означает ли это то, что валентность совпадает со степенью окисления. Помните, валентность может совпадать со степенью окисления, но данные показатели не тождественны друг другу. Валентность не может иметь знака =/-, а также не может быть нулевой.

    Второй способ определения валентности по химической формуле, если известна постоянная валентность одного из элементов. Например, возьмем формулу оксида меди: CuО. Валентность кислорода II. Видим, что на один атом кислорода в данной формуле приходится один атом меди, значит и валентность меди равна II. А теперь возьмем формулу посложнее: Fe 2 O 3 . Валентность атома кислорода равна II. Таких атомов здесь три, умножаем 2*3 =6. Получили, что на два атома железа приходится 6 валентностей. Узнаем валентность одного атома железа: 6:2=3. Значит валентность железа равна III.

    Кроме того, когда необходимо оценить "максимальную валентность", всегда следует исходить из электронной конфигурации, которая имеется в «возбужденном» состоянии.



Цель: Продолжить изучение валентности. Дать понятие степени окисления. Рассмотреть виды степеней окисления: положительная, отрицательная, нулевой значение. Научиться правильно, определять степени окисления атома в соединении. Научить приемам сравнения и обобщения изучаемых понятий; отработать умения и навыки в определении степени окисления по химическим формулам; продолжить развитие навыков самостоятельной работы; способствовать развитию логического мышления. Формировать чувство толерантности (терпимости и уважения к чужому мнению) взаимопомощи; осуществлять эстетическое воспитание (через оформление доски и тетрадей, при применении презентаций).

Ход урока

I . Организационный момент

Проверка учащихся к уроку.

II . Подготовка к уроку.

К уроку понадобятся: Периодическая система Д.И.Менделеева, учебник, рабочие тетради, ручки, карандаши.

III . Проверка домашнего задания .

Фронтальный опрос, некоторые будут работать у доски по карточкам, проведение теста, и подведением данного этапа будет интеллектуальная игра.

1. Работа с карточками.

1 карточка

Определить массовые доли (%) углерода и кислорода в углекислом газе (СО 2 ) .

2 карточка

Определить тип связи в молекуле Н 2 S. Написать структурную и электронную формулы молекулы.

2. Фронтальный опрос

  1. Что называется химической связью?
  2. Какие виды химических связей вы знаете?
  3. Какая связь называется ковалентной связью?
  4. Какие ковалентные связи выделяют?
  5. Что такое валентность?
  6. Как мы определяем валентность?
  7. Какие элементы (металлы и неметаллы) имеют изменчивую валентность?

3. Тестирование

1. В каких молекулах существует неполярная ковалентная связь?

2 . У какой молекулы при образовании ковалентно-неполярной связи образуется тройная связь?

3 . Как называется положительно заряженные ионы?

А) катионы

Б) молекулы

В) анионы

Г) кристаллы

4. В каком ряду располагаются вещества ионного соединения?

А) СН 4 , NН 3 , Мg

Б) СI 2 , МgО, NаСI

В) МgF 2 , NаСI, СаСI 2

Г) Н 2 S, НСI, Н 2 О

5 . Валентность определяются по:

А) по номеру группы

Б) по числу неспаренных электронов

В) по типу химической связи

Г) по номеру периода.

4. Интеллектуальная игра «Крестики-нолики »

Найдите вещества с ковалентно-полярной связь.

IV . Изучение нового материала

Степень окисления является важной характеристикой состояния атома в молекуле. Валентность, определяется по числу неспаренных электронов в атоме, орбиталями с неподеленными электронными парами, только в процессе возбуждения атома. Высшая валентность элемента, как правило, равна номеру группы. Степень окисления в соединениях с разными химическими связями образуется неодинаково.

Как образуется степень окисления у молекул с разными химическими связями?

1) В соединениях с ионной связью степени окисления элементов равно зарядам ионов.

2) В соединениях с ковалентной неполярной связью (в молекулах простых веществ) степень окисления элементов равно 0.

Н 2 0 , С I 2 0 , F 2 0 , S 0 , AI 0

3) У молекул с ковалентно-полярной связью степень окисления определяется подобно молекулам с ионной химической связью.

Степень окисления элемента – это условный заряд его атома, в молекуле, если считать, что молекула состоит из ионов.

Степень окисления атома в отличие от валентности имеет знак. Она может быть положительной, отрицательной и нулевой.

Валентность обозначатся римскими цифрами сверху символа элемента:

II

I

IV

Fe

Cu

S ,

а степень окисления обозначается арабскими цифрами с зарядом над символам элемента (М g +2 , Са +2 , N а +1 , CI ˉ¹).

Положительная степень окисления – равна числу электронов, отданных данным атомам. Атом может отдать все валентные электроны (для главных групп это электроны внешнего уровня) соответствующее номеру группы, в котором находится элемент, проявляя при этом высшую степень окисления (исключение ОF 2).Например: высшая степень окисления главной подгруппы II группы равна +2 (Zn +2) Положительную степень проявляют как металлы и неметаллы, кроме F, He, Ne.Например: С+4 , Na +1 , Al +3

Отрицательная степень окисления равна числу электронов, принятых данным атомом, ее проявляют только неметаллы. Атомы неметаллов присоединяют столько электронов, сколько их не хватает до завершения внешнего уровня, проявляя при этом отрицательную степень.

У элементов главных подгрупп IV-VII групп минимальная степень окисления численно равна

Например:

Значение степени окисления между высшим и низшим степенями окислений называется промежуточными:

Высшая

Промежуточные

Низшая

С +3 , С +2 ,С 0 ,С -2

В соединениях с ковалентной неполярной связью (в молекулах простых веществ) степень окисления элементов равно 0: Н 2 0 , С I 2 0 , F 2 0 , S 0 , AI 0

Для определения степени окисления атома в соединении следует учитывать ряд положений:

1. Степень окисления F во всех соединениях равна « -1». Na +1 F -1 , H +1 F -1

2. Степень окисления кислорода в большинстве соединений равна (-2) исключение: О F 2 , где степень окисления О +2 F -1

3. Водород в большинстве соединений имеет степень окисления +1, кроме соединения с активными металлами, где степень окисления (-1) : Na +1 H -1

4.Степень окисления металлов главных подгрупп I , II , III групп во всех соединениях равна +1,+2,+3.

Элементы с постоянной степенью окисления это:

А) щелочные металлы (Li, Na, K, Pb, Si, Fr) - степень окисления +1

Б) элементы II главной подгруппы группы кроме (Hg): Be, Mg, Ca, Sr, Ra, Zn, Cd - степень окисления +2

В) элемент III группы: Al - степень окисления +3

Алгоритм составления формулы в соединениях:

1 способ

1 . На первом месте пишется элемент с меньшей электроотрицательностью, на втором с большей электроотрицательностью.

2 . Элемент, написанный на первом месте имеет положительный заряд «+», а на втором с отрицательным зарядом «-».

3 . Указать для каждого элемента степень окисления.

4 . Найти общее кратное значение степеней окисления.

5. Разделить наименьшее общее кратное на значение степеней окисления и полученные индексы приписать внизу справа после символа соответствующего элемента.

6. Если степень окисления четное – нечетное, то они становятся рядом с символом справа внизу крест – накрест без знака «+» и «-»:

7. Если степень окисления имеет четное значение, то их сначала нужно сократить на наименьшее значение степени окисления и поставить крест – накрест без знака «+» и «-»: С +4 О -2

2 способ

1 . Обозначим степень окисления N через Х, указать степень окисления О: N 2 x O 3 -2

2 . Определить сумму отрицательных зарядов, для этого степень окисления кислорода умножаем на индекс кислорода: 3· (-2)= -6

3 .Чтобы молекула была электронейтральной нужно определить сумму положительных зарядов: Х2 = 2Х

4 .Составить алгебраическое уравнение:

N 2 + 3 O 3 –2

V . Закрепление

1) Проведение закрепления темы игрой, которое называется «Змейка».

Правила игры: учитель раздает карточки. На каждой карточке написан один вопрос и один ответ на другой вопрос.

Учитель начинает игру. Зачитает вопрос, ученик, у которого на карточке есть, ответ на мой вопрос поднимает руку и говорит ответ. Если ответ правильный, то он читает свой вопрос и у того ученика у которого есть ответ на этот вопрос поднимает руку и отвечает и т.д. Образуется змейка правильных ответов.

  1. Как и где обозначается степень окисления у атома химического элемента?
    Ответ : арабской цифрой над символом элемента с зарядом «+» и «-».
  2. Какие виды степеней окисления выделяют у атомов химических элементов?
    Ответ : промежуточная
  3. Какую степень проявляет металлы?
    Ответ : положительная, отрицательная, нулевая.
  4. Какую степень проявляют простые вещества или молекулы с неполярной ковалентной связью.
    Ответ : положительная
  5. Какой заряд имеют катионы и анионы?
    Ответ : нулевое.
  6. Как называется степень окисления, которая стоит между положительным и отрицательным степенями окисления.
    Ответ : положительный,отрицательный

2) Написать формулы веществ состоящих из следующих элементов

  1. N и H
  2. Р и О
  3. Zn и Cl

3) Найти и зачеркнуть вещества, не имеющие переменчивую степень окисления.

Na, Cr, Fe, K, N, Hg, S, Al, C

VI . Итог урока.

Выставление оценок с комментариями

VII . Домашнее задание

§23, стр.67-72, задание после §23-стр 72 №1-4 выполнить.

Степень окисления +2 во всех соединениях проявляет

Ответ:4

Пояснение:

Из всех предложенных вариантов степень окисления +2 в сложных соединениях проявляет только цинк, являясь элементом побочной подгруппы второй группы, где максимальная степень окисления равна номеру группы.

Олово – элемент главной подгруппы IV группы, металл, проявляет степени окисления 0 (в простом веществе), +2, +4 (номер группы).

Фосфор – элемент главной подгруппы главной группы, являясь неметаллом, проявляет степени окисления от -3 (номер группы – 8) до +5 (номер группы).

Железо – металл, элемент расположен в побочной подгруппе главной группы. Для железа характерны степени окисления: 0, +2, +3, +6.

Соединение состава KЭО 4 образует каждый из двух элементов:

1) фосфор и хлор

2) фтор и марганец

3) хлор и марганец

Ответ: 3

Пояснение:

Соль состава KЭО 4 содержит кислотный остаток ЭО 4 — , где кислород обладает степенью окисления -2, следовательно, степень окисления элемента Э в этом кислотном остатке равна +7. Из предложенных вариантов подходят хлор и марганец – элементы главной и побочной подгруппы VII группы соответственно.

Фтор – также элемент главной подгруппы VII группы, однако, являясь самым электроотрицательным элементом, не проявляет положительных степеней окисления (0 и -1).

Бор, кремний и фосфор – элементы главных подгрупп 3, 4 и 5 групп соответственно, поэтому в солях проявляют соответствующие максимальные степени окисления +3, +4, +5.

Ответ: 4

Пояснение:

Одинаковую высшую степень окисления в соединениях, равную номеру группы (+5), проявляют P и As. Это элементы расположены в главной подгруппе V группы.

Zn и Cr – элементы побочных подгрупп II и VI групп соответственно. В соединениях цинк проявляет высшую степень окисления +2, хром — +6.

Fe и Mn – элементы побочных подгруппы VIII и VII групп соответственно. Высшая степень окисления у железа составляет +6, у марганца — +7.

Одинаковую высшую степень окисления в соединениях проявляют

Ответ: 4

Пояснение:

Одинаковую высшую степень окисления в соединениях, равную номеру группы (+5), проявляют P и N. Эти элементы расположены в главной подгруппе V группы.

Hg и Cr – элементы побочных подгрупп II и VI групп соответственно. В соединениях ртуть проявляет высшую степень окисления +2, хром – +6.

Si и Al − элементы главных подгруппы IV и III групп соответственно. Следовательно, для кремния максимальная степень окисления в сложных соединениях равна +4 (номер группы, где расположен кремний), для алюминия − +3 (номер группы, где расположен алюминия).

F и Mn – элементы главной и побочной подгрупп VII групп соответственно. Однако фтор, являясь самым электроотрицательным элементом Периодической системы химических элементов, не проявляет положительных степеней окисления: в сложных соединения его степень окисления равна −1 (номер группы−8). Высшая степень окисления марганца составляет +7.

Степень окисления +3 азот проявляет в каждом из двух веществ:

1) HNO 2 и NH 3

2) NH 4 Cl и N 2 О 3

Ответ: 3

Пояснение:

В азотистой кислоте HNO 2 степень окисления кислорода в кислотном остатке равна -2, у водорода — +1, следовательно, чтобы молекула оставалась электронейтральной, степень окисления азота составляет +3. В аммиаке NH 3 азот является более электроотрицательным элементом, поэтому он оттягивает на себя электронную пару ковалентной полярной связи и обладает отрицательной степенью окисления -3, степень окисления водорода в аммиаке составляет +1.

Хлорид аммония NH 4 Cl является аммонийной солью, поэтому степень окисления азота такая же, как в аммиаке, т.е. равна -3. В оксидах степень окисления кислорода всегда равна -2, поэтому у азота она составляет +3.

В нитрите натрия NaNO 2 (соли азотистой кислоты) степень окисления азота такая же, как в азота в азотистой кислоте, т.к. составляет +3. Во фториде азота степень окисления азота +3, поскольку фтор является самым электроотрицательным элементом Периодической системы и в сложных соединениях проявляет отрицательную степень окисления -1. Данный вариант ответа удовлетворяет условию задания.

В азотной кислоте азот обладает высшей степенью окисления, равной номеру группы (+5). Азот как простое соединение (поскольку состоит из атомов одного химического элемента) обладает степенью окисления 0.

Высшему оксиду элемента VI группы соответствует формула

Ответ: 4

Пояснение:

Высшим оксидом элемента является оксид элемента с его максимальной степени окисления. В группе наивысшая степень окисления элемента равна номеру группы, следовательно, в VI группе максимальная степень окисления элемента равна +6. В оксидах кислород проявляет степень окисления -2. Цифры, стоящие под символом элемента, называются индексами и указывает на количество атомов этого элемента в молекуле.

Первый вариант является неверным, т.к. элемент обладает степенью окисления 0-(-2)⋅6/4 = +3.

Во втором варианте элемент обладает степенью окисления 0-(-2) ⋅ 4 = +8.

В третьем варианте степень окисления элемента Э: 0-(-2) ⋅ 2 = +4.

В четвертом варианте степень окисления элемента Э: 0-(-2) ⋅ 3 = +6, т.е. это искомый ответ.

Степень окисления хрома в дихромате аммония (NH 4) 2 Cr 2 O 7 равна

Ответ: 1

Пояснение:

В бихромате аммония (NH 4) 2 Cr 2 O 7 в катионе аммония NH 4 + азот как более электроотрицательный элемент обладает низшей степенью окисления -3, водород заряжен положительно +1. Следовательно, весь катион обладает зарядом +1, но, поскольку этих катионов 2, то общий заряд составляет +2.

Для того чтобы молекула оставалась электронейтральной, у кислотного остатка Cr 2 O 7 2− заряд должен быть -2. Кислород в кислотных остатках кислот и солей всегда обладает зарядом -2, поэтому 7 атомов кислорода, входящих в состав молекулы бихромата аммония, заряжены -14. Атомов хрома Cr в молекулы 2, следовательно, если заряд хрома обозначить за x, то имеем:

2x + 7 ⋅ (-2) = -2, где x = +6. Заряд хрома в молекуле бихромата аммония равен +6.

Степень окисления +5 возможна для каждого из двух элементов:

1) кислорода и фосфора

2) углерода и брома

3) хлора и фосфора

Ответ: 3

Пояснение:

В первом предложенном варианте ответов только фосфор как элемент главной подгруппы V группы может проявлять степень окисления +5, которая является для него максимальной. Кислород (элемент главной подгруппы VI группы), являясь элементом с высокой электроотрицательностью, в оксидах проявляет степень окисления -2, как простое вещество – 0 и в соединении со фтором OF 2 – +1. Степень окисления +5 для него не характерна.

Углерод и бром – элементы главных подгрупп IV и VII групп соответственно. Для углерода характерна максимальная степень окисления +4 (равна номеру группы), а бром проявляет степени окисления -1, 0 (в простом соединении Br 2), +1, +3, +5 и +7.

Хлор и фосфор – элементы главных подгрупп VII и V групп соответственно. Фосфор проявляется максимальную степень окисления +5 (равную номеру группы), для хлора аналогично брому характерны степени окисления -1, 0 (в простом соединении Cl 2), +1, +3, +5, +7.

Сера и кремний – элементы главных подгрупп VI и IV групп соответственно. Сера проявляет широкий спектр степеней окисления от -2 (номер группы − 8) до +6 (номер группы). Для кремния максимальная степень окисления равна +4 (номер группы).

Ответ: 1

Пояснение:

В нитрате натрия NaNO 3 натрий имеет степень окисления +1 (элемент I группы), атомов кислорода в кислотном остатке 3, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен иметь степень окисления: 0 − (+1) − (−2)·3 = +5.

В нитрите натрия NaNO 2 атом натрий также имеет степень окисления +1 (элемент I группы), атомов кислорода в кислотном остатке 2, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен обладать степенью окисления: 0 − (+1) − (−2)·2 = +3.

NH 4 Cl − хлорид аммония. В хлоридах атомы хлора имеют степень окисления −1, атомы водорода, которого в молекуле 4, заряжен положительно, следовательно, чтобы молекула оставалась электронейтральной, степень окисления азота: 0 − (−1) − 4 ·(+1) = −3. В аммиаке и катионах аммонийных солей азот имеет минимальную степень окисления −3 (номер группы, в которой расположен элемент, − 8).

В молекуле оксида азота NO кислород проявляет минимальную степень окисления −2, как во всех оксидах, следовательно, степень окисления азота равна +2.

0EB205

Высшую степень окисления азот проявляет в соединении, формула которого

Ответ: 1

Пояснение:

Азот – элемент главной подгруппы V группы, следовательно, он может проявлять максимальную степень окисления, равную номеру группы, т.е. +5.

Одна структурная единица нитрата железа Fe(NO 3) 3 состоит из одного иона Fe 3+ и трех нитрат-ионов. В нитрат-ионах атомы азота независимо от типа противоиона имеют степень окисления +5.

В нитрите натрия NaNO 2 натрий имеет степень окисления +1 (элемент главной подгруппы I группы), атомов кислорода в кислотном остатке 2, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен обладать степенью окисления 0 − (+1) − (−2)⋅2 = +3.

(NH 4) 2 SO 4 – сульфат аммония. В солях серной кислоты анион SO 4 2− имеет заряд 2−, следовательно, каждый катион аммония заряжен 1+. На водороде заряд +1, поэтому на азоте −3 (азот более электроотрицателен, поэтому оттягивает на себя общую электронную пару связи N−H). В аммиаке и катионах аммонийных солей азот имеет минимальную степень окисления −3 (номер группы, в которой расположен элемент, − 8).

В молекуле оксида азота NO 2 кислород проявляет минимальную степень окисления −2, как во всех оксидах, следовательно, степень окисления азота равна +4.

28910E

В соединениях состава Fe(NO 3) 3 и CF 4 степень окисления азота и углерода равна соответственно

Ответ: 4

Пояснение:

Одна структурная единица нитрата железа (III) Fe(NO 3) 3 состоит из одного иона железа Fe 3+ и трех нитрат-ионов NO 3 − . В нитрат-ионах азот всегда имеет степень окисления +5.

Во фториде углерода CF 4 фтор является более электроотрицательным элементом и оттягивает на себя общую электронную пару связи C-F, проявляя степень окисления -1. Следовательно, углерод C имеет степень окисления +4.

A32B0B

Степень окисления +7 хлор проявляет в каждом из двух соединений:

1) Ca(OCl) 2 и Cl 2 O 7

2) KClO 3 и ClO 2

3) BaCl 2 и HClO 4

Ответ: 4

Пояснение:

В первом варианте атомы хлора обладают степенями окисления +1 и +7 соответственно. Одна структурная единица гипохлорита кальция Ca(OCl) 2 состоит из одного иона кальция Ca 2+ (Ca — элемент главной подгруппы II группы) и двух гипохлорит-ионов OCl − , каждый из которых имеет заряд 1−. В сложных соединениях, кроме OF 2 и различных перекисей, кислород всегда имеет степень окисления −2, поэтому, очевидно, что хлор имеет заряд +1. В оксиде хлора Cl 2 O 7 , как и во всех оксидах, кислород обладает степенью окисления −2, следовательно, на хлор в этом соединении имеет степень окисления +7.

В хлорате калия KClO 3 атом калия имеет степень окисления +1, а кислород — −2. Для того чтобы молекула оставалась электронейтральной, хлор должен проявлять степень окисления +5. В оксиде хлора ClO 2 кислород, как и в любом другом оксиде, обладает степенью окисления −2, следовательно, для хлора его степень окисления равна +4.

В третьем варианте катион бария в сложном соединении заряжен +2, следовательно, на каждом анионе хлора в соли BaCl 2 сосредоточен отрицательный заряд −1. В хлорной кислоте HClO 4 общий заряд 4 атомов кислорода составляет −2⋅4 = −8, на катионе водорода заряд +1. Чтобы молекула оставалась электронейтральной, заряд хлора должен составлять +7.

В четвертом варианте в молекуле перхлората магния Mg(ClO 4) 2 заряд магния +2 (во всех сложных соединениях магний проявляет степень окисления +2), поэтому на каждый анион ClO 4 − приходится заряд 1−. В общем 4 иона кислорода, где каждый проявляет степень окисления −2, заряжены −8. Следовательно, чтобы общий заряд аниона составлял 1−, на хлоре должен быть заряд +7. В оксиде хлора Cl 2 O 7 , как было объяснено выше, заряд хлора составляет +7.