Домой / ПО / Применяя правило лопиталя найти предел функции онлайн. Как вычислить пределы функций, не пользуясь средствами дифференциального исчисления. Раскрытие неопределенностей по правилу Лопиталя

Применяя правило лопиталя найти предел функции онлайн. Как вычислить пределы функций, не пользуясь средствами дифференциального исчисления. Раскрытие неопределенностей по правилу Лопиталя

Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция. Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций. Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):

Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к более точным формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин . Пусть функции f (x ) и g (x a . А в самой точке a a производная функции g (x ) не равна нулю (g "(x a равны между собой и равны нулю:

.

Правило Лопиталя для случая предела двух бесконечно больших величин . Пусть функции f (x ) и g (x ) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a . А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g (x ) не равна нулю (g "(x )≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).

Замечания .

1. Правила Лопиталя применимы и тогда, когда функции f (x ) и g (x ) не определены при x = a .

2. Если при вычисления предела отношения производных функций f (x ) и g (x ) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a , а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1.

x =2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции . Перед последним знаком равенства вычисляли обычный предел , подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Раскрытие неопределённостей вида "ноль умножить на бесконечность"

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13.

Решение. Получаем

.

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

Для решения пределов существуют различные методы решений и формулы. Но самым быстрым и легким способом, а также универсальным является метод Лопиталя. Для того, чтобы успешно пользоваться этим замечательным простым способом вычисления пределов достаточно хорошо уметь находить производные различных функций. Начнём с теории.

Сформулируем правило Лопиталя. Если:

  • $ \lim \limits_{x \to a} f(x) = \lim \limits_{x \to a} g(x) = 0 \text{ или } \infty $
  • Существуют $ f"(a) \text{ и } g"(a) $
  • $ g"(x)\neq0 $
  • Существует $ \lim \limits_{x \to a} \frac{f(x)}{g(x)} $

тогда существует $ \lim \limits_{x \to a} \frac{f(x)}{g(x)} = \lim \limits_{x \to a} \frac{f"(x)}{g"(x)} $

  1. Подставляем точку $ x $ в предел
  2. Если получается $ \frac{0}{0} \text{ или } \frac{\infty}{\infty} $, тогда находим производную числителя и знаменателя
  3. Подставляем точку $ x $ в получившийся предел и вычисляем его. Если получается неопределенность, то повторяем пункты 2 и 3

Примеры решения

Пример 1
Решить предел по правилу Лопиталя: $ \lim\limits_{x \to -1} \frac{x^2-1}{x^3+x+2} $
Решение

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x^3+x+2} = \frac{0}{0} = $$

Видим, что получилась неопределенность $ \frac{0}{0} $, если подставить вместо иксов точку $ x = -1 $, а это первый сигнал о том, что необходимо применить формулу для вычисления предела. Используем её:

$$ = \lim \limits_{x \to -1} \frac{(x^2-1)"}{(x^3+x+2)"} = $$ $$ =\lim \limits_{x \to -1} \frac{2x}{3x^2+1} = $$

Снова попробуем вычислить предел подставив $ x=-1 $ в последний предел, получаем:

$$ =\frac{2 \cdot (-1)}{3 \cdot (-1)^2+1} = \frac{-2}{4} = -\frac{1}{2} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim\limits_{x \to -1} \frac{x^2-1}{x^3+x+2} = -\frac{1}{2} $$
Пример 4
Вычислить предел используя правило Лопиталя: $ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} $
Решение

$$ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} = \frac{0}{0}= $$

$$ =\lim \limits_{x\to 0} \frac{(\sin 2x-e^{5x}+1)"}{(x-\cos x+1)"} = $$

$$ =\lim \limits_{x\to 0} \frac{(\sin 2x)"-(e^{5x})"+(1)"}{(x)"-(\cos x)"+(1)"}= $$

$$ =\lim \limits_{x\to 0} \frac{2\cos 2x-5e^{5x}}{1+\sin x} =\frac{2\cos0-5e^0}{1+\sin 0}= $$

$$ =\frac{2\cdot 1-5\cdot 1}{1+0} = \frac{-3}{1} = -3 $$

Ответ
$$ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} = -3 $$

Подведем итог: Правило Лопиталя - это способ и метод благодаря которому можно раскрывать неопределенности вида $ \frac{0}{0} $ и $ \frac{\infty}{\infty} $ при вычислении пределов. Суть его состоит в том, что предел отношения функций равен пределу отношений производных от этих функций.

Теорема Лопита́ля (также правило Бернулли - Лопиталя ) - метод нахождения пределов функций,раскрывающий неопределённости вида и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Точная формулировка .

Правило говорит, что если функции f (x ) и g (x ) обладают следующим набором условий:

тогда существует . При этом теорема верна и для других баз (для указанной будет приведено доказательство).

История.

Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализбесконечно малых», изданном в 1696 году. В предисловии к этому сочинению Лопиталь указывает, что безвсякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того,чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензиина все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу подпримечательным названием «Усовершенствование моего опубликованного в „Анализе бесконечно малых“метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», 1704 .

Доказательство.

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида ).

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a , мы можемнепрерывным образом их доопределить в этой точке: пусть f (a ) = g (a ) = 0. Возьмём некоторый x израссматриваемой полуокрестности и применим к отрезку теорему Коши . По этой теореме получим:

,

но f (a ) = g (a ) = 0, поэтому .

Для конечного предела и

Для бесконечного,

что является определением предела отношения функций.

Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен A . Тогда, при стремлении x к a справа,это отношение можно записать как A + α, где α - O (1). Запишем это условие:

Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :

Что можно привести к следующему виду:

.

Для x , достаточно близких к a , выражение имеет смысл; предел первого множителя правой части равенединице (так как f (t ) и g (t ) - константы , а f (x ) и g (x ) стремятся к бесконечности). Значит, этот множительравен 1 + β, где β - бесконечно малая функция при стремлении x к a справа. Выпишем определение этогофакта, используя то же значение , что и в определении для α:

Получили, что отношение функций представимо в виде (1 + β)(A + α), и .По любому данному можно найти такое , чтобы модуль разности отношения функций и A был меньше ,значит, предел отношения функций действительно равен A .

Если же предел A бесконечен (допустим, он равен плюс бесконечности), то

В определении β будем брать ; первый множитель правой части будет больше 1/2 при x ,достаточно близких к a , а тогда .

Для других баз доказательства аналогичны приведённым.

Примеры.

(Только если числитель и знаменатель ОБА стремятся или к 0; или к ; или к .)

Правило Лопиталя

Правило Лопиталя представляет собой метод вычисления пределов, имеющих неопределенность типа или . Пусть a является некоторым конечным действительным числом или равно бесконечности.

Правило Лопиталя можно также применять к неопределенностям типа . Первые две неопределенности можно свести к типу или с помощью алгебраических преобразований. А неопределенности сводятся к типу с помощью соотношения

Правило Лопиталя справедливо также и для односторонних пределов.

Пример 1

Вычислить предел .

Решение.

Дифференцируя числитель и знаменатель, находим значение предела:

Пример 2

Вычислить предел .

Решение.

Поскольку прямая подстановка приводит к неопределенности типа , применяем правило Лопиталя.

Пример 3

Вычислить предел .

Решение.

Здесь мы имеем дело с неопределенностью типа . После простых преобразований, получаем

Пример 4

Найти предел .

Решение.

Используя правило Лопиталя, можно записать

Пример 5

Найти предел .

Решение.

Здесь мы встречаемся с неопределенностью типа . Обозначим . После логарифмирования получаем

Соответственно,

Пример 6

15. Правила Лопиталя*

Швейцарский математик Иоганн I Бернулли (1667-1748) после успешного окончания Базельского университета, путешествуя по Европе, в 1690 году приезжает в Париж. В литературном салоне философа Никола Мальбранша (1638-1715) Иоганн знакомится с французским математиком маркизом Гийомом Франсуа Антуаном де Лопиталем (1661-1704). В ходе оживленной беседы Лопиталь удивился, как легко, “как бы играя”, юнец Бернулли решал трудные задачи по новому исчислению. Поэтому Лопиталь попросил прочитать ему несколько лекций. Устные беседы понравились Лопиталю, и он за приличный гонорар стал получать материалы в письменном виде. Заметим, что общеизвестное теперь “правило Лопиталя” для раскрытия неопределенностей также было передано ему Иоганном. Уже в 1696 году появился знаменитый трактат Лопиталя “Введение в анализ бесконечно малых для понимания кривых линий”. Вторая часть курса, изложенного Иоганном I Бернулли, была опубликована лишь в 1742 году и называлась “Математические лекции о методе интегралов и другие; написаны для знаменитого маркиза Госпиталия; годы 1691-1692”. В 1921 году были обнаружены рукописные копии лекций, написанные рукой Иоганна I Бернулли, оригиналы которых были переданы Лопиталю в 1691-1692 гг. Из них ученые неожиданно обнаружили, что Лопталь в своем “Анализе” почти не отступал от лекций своего молодого учителя.

Теорема (Коши). Пусть функции и непрерывны на , дифференцируемы на и . Тогда :

Доказательство. Рассмотрим функцию

Выберем так, чтобы выполнялись все условия теоремы Ролля, т.е. .

По теореме Ролля существует :

Первое правило Лопиталя

Определение. Пусть функции , непрерывны на , дифференцируемы в , причем . Пусть . Тогда говорят, что отношение при представляет собой неопределенность вида .

Теорема.

Применим теорему Коши к отрезку , где . Существует :

и, значит,

Это и означает, что .

В случае, когда бесконечно, неравенство (1) заменяется на

в зависимости от знака . В остальном доказательство не меняется.

Второе правило Лопиталя

Определение. Пусть функции , непрерывны и дифференцируемы в , причем . Пусть . Тогда говорят, что отношение при представляет собой неопределенность вида .

Теорема. Если при указанных условиях существует

Доказательство. Пусть конечно. По выберем : в интервале выполняется неравенство

Определим функцию из условия

при . Применим к отрезку теорему Коши. Получим, что существует :

Для тех , для которых

Так как произвольно мало, то

В случае, когда , неравенство (2) заменяется на

а неравенство (4) – на неравенство

имеющим место при , достаточно близких к a в силу (3).

Аналогично рассматривается случай .

  • Правило Лопиталя и раскрытие неопределённостей
  • Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"
  • Раскрытие неопределённостей вида "ноль умножить на бесконечность"
  • Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"
  • Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Правило Лопиталя и раскрытие неопределённостей

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей значительно упрощается с помощью правила Лопиталя.

Суть правила Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Вообще, под правилами Лопиталя понимаются несколько теорем, которые могут быть переданы в следующей одной формулировке.

Правило Лопиталя . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки , за исключением, может быть, самой точки , причём в этой окрестности

(1)

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

В равенстве (1) величина , к которой стремится переменная, может быть либо конечным числом, либо бесконечностью, либо минус бесконечностью.

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить

x =2 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 2. Вычислить

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Если предел отношения производных представляет собой неопределённость вида 0/0 или ∞/∞, то можно снова применить правило Лопиталя, т.е. перейти к пределу отношения вторых производных, и т.д.

Пример 5. Вычислить

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить