Домой / Дети / Презентация на тему "нанотехнологии - история развития ". Нанотехнология в современном мире. Защита проектов Нанотехнологии в России

Презентация на тему "нанотехнологии - история развития ". Нанотехнология в современном мире. Защита проектов Нанотехнологии в России






Проблемные вопросы. 1. Кто вёл термин Нанотехнологиях? Кто вёл термин Нанотехнологиях? Кто вёл термин Нанотехнологиях? 2. Каков размер нано робота? Каков размер нано робота? Каков размер нано робота? 3. Какой вред принесёт нанотехнологии людям? Какой вред принесёт нанотехнологии людям? Какой вред принесёт нанотехнологии людям? 4. Смогут ли нанотехнологии излечать самые сложные болезни? Смогут ли нанотехнологии излечать самые сложные болезни? Смогут ли нанотехнологии излечать самые сложные болезни? 5. Что будет в будущем? Что будет в будущем? Что будет в будущем?




Термин "нано-технологии" в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Термин "нано-технологии" в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Приставка нано обозначает Приставка нано обозначает =0, одна миллиардная =0, одна миллиардная Первое представление нанотехнологий






Вред нанотехнологий 15 января SA объявила, что искусственно созданные наночастицы могут представлять опасность для здоровья человека, поэтому содержащие их продукты впредь не смогут получать сертификат SA. Это относится в первую очередь к санитарно- гигиеническим и косметическим средствам (солнцезащитной косметике, кремам от морщин), но касается также пищевых продуктов и одежды. 15 января SA объявила, что искусственно созданные наночастицы могут представлять опасность для здоровья человека, поэтому содержащие их продукты впредь не смогут получать сертификат SA. Это относится в первую очередь к санитарно- гигиеническим и косметическим средствам (солнцезащитной косметике, кремам от морщин), но касается также пищевых продуктов и одежды. "Запрещенными" являются материалы, если они содержат частицы размером менее 125 нанометров (нанометр, напомним, - одна миллиардная метра), а также если средний размер их частиц составляет менее 200 нанометров. "Запрещенными" являются материалы, если они содержат частицы размером менее 125 нанометров (нанометр, напомним, - одна миллиардная метра), а также если средний размер их частиц составляет менее 200 нанометров.




Нановзрывчатка Совместная команда ученых из Миссурийского университета (Колумбия) и армии США разработали особую нановзрывчатку, способную порождать сверхзвуковую ударную волну, которая поможет доставлять лекарственные вещества прямо в раковые клетки, не повреждая при этом здоровые клетки организма. Совместная команда ученых из Миссурийского университета (Колумбия) и армии США разработали особую нановзрывчатку, способную порождать сверхзвуковую ударную волну, которая поможет доставлять лекарственные вещества прямо в раковые клетки, не повреждая при этом здоровые клетки организма. Такая взрывчатка помещается в специальный прибор, который можно будет использовать для облегчения доставки лекарственного препарата прямо в раковые клетки или клетки вируса иммунодефицита человека (ВИЧ). Такая взрывчатка помещается в специальный прибор, который можно будет использовать для облегчения доставки лекарственного препарата прямо в раковые клетки или клетки вируса иммунодефицита человека (ВИЧ).


Нанотехнологии - это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда необыкновенные свойства. Считается, что нанотехнология является ключевой технологией 21- го века и охватывает процессы, происходящие с частицами в десятки тысяч раз меньше миллиметра. Эти частицы называют нанометрами. Для сравнения: сантиметр - сотая доля метра, миллиметр - тысячная. А нано обозначает миллиардную долю. То есть, нанометр - миллиардная часть метра. В нанометрах измеряются молекулы и вирусы. Рождение новой эпохи нанотехнологий многие связывают с 1981 годом - когда немецкие физики Герд Бинниг и Генрих Рорер создали зондовый туннельный микроскоп, позволяющий не только видеть, но и переносить с места на место отдельные атомы. Нанотехнологии - это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда необыкновенные свойства. Считается, что нанотехнология является ключевой технологией 21- го века и охватывает процессы, происходящие с частицами в десятки тысяч раз меньше миллиметра. Эти частицы называют нанометрами. Для сравнения: сантиметр - сотая доля метра, миллиметр - тысячная. А нано обозначает миллиардную долю. То есть, нанометр - миллиардная часть метра. В нанометрах измеряются молекулы и вирусы. Рождение новой эпохи нанотехнологий многие связывают с 1981 годом - когда немецкие физики Герд Бинниг и Генрих Рорер создали зондовый туннельный микроскоп, позволяющий не только видеть, но и переносить с места на место отдельные атомы.

Введение
1.История развития нанотехнологий
2.Нанотехнологии в медицине
3.Воронежская область на передовых рубежах наноисследований
3.1 Вузы воронежской области и их разработки в области нанотехнологий
3.2 Индустрия нанотехнологий Воронежской области
3.3 Нанопродукция для массового потребителя
Заключение
Литература
«Там внизу — много места»
- Ричард Фейнман

Введение
Область науки и техники, именуемая нанотехнологией, как и соответствующая терминология, появилась сравнительно недавно. Однако ее перспективы настолько грандиозны для нашей цивилизации, что необходимо широкое распространение основной идеи нанотехнологии, прежде всего среди молодежи.
Хотя слово «нанотехнология» является относительно новым, устройства и структуры нанометровых размеров не новы. На самом деле они существуют на Земле столько же, сколько существует сама жизнь. Моллюск морское ушко выращивает очень прочную, переливающуюся изнутри раковину, склеивая прочные наночастички мела особой смесью белков с углеводами. Трещины, появляющиеся снаружи, не могут распространяться в раковине из-за наноструктурированных кирпичиков. Раковины являются природной демонстрацией того, что структуры, сформированные из наночастиц, могут быть намного прочнее материала, однородного в объеме.
В точности неизвестно, когда человек впервые начал использовать преимущества наноразмерных материалов. Есть сведения, что в четвертом веке нашей эры римские стекловары делали стекло, содержащее наночастицы металлов. Изделие этой эпохи, называемое чашей Ликурга, находится в Британском Музее. Чаша, изображающая смерть короля Ликурга, сделана из стекла на основе натровой извести, содержащего наночастицы серебра и золота. Цвет чаши меняется с зеленого на темно-красный при помещении в нее источника света. Огромное разнообразие прекрасных цветов витражей в средневековых храмах объясняется присутствием металлических наночастиц в стекле.
Бурное развитие нанотехнологий на мировом уровне говорит об их большой значимости в процессе развития цивилизации. Нанотехнологии кардинальным образом изменят все сферы жизни человека. На их основе могут быть созданы товары и продукты, применение которых позволит революционизировать целые отрасли экономики.
Значимость развития нанотехнологий трудно переоценить! А значит изучать все, что связано с нанотехнологиями необходимо уже на школьном уровне. И пусть базовый уровень изучения физики в средней школе предусматривает только 2 часа в неделю, и каждый заинтересованный ученик понимает, что этого мало - интерес к поставленной проблеме не ослабевает.

1. Сегодня понятие нанотехнологии прочно входит в нашу жизнь, а еще в 1959 г. знаменитый американский физик-теоретик Ричард Фейнман говорил о том, что существует «поразительно сложный мир малых форм, а когда-нибудь (например, в 2000 г.) люди будут удивляться тому, что до 1960 г. никто не относился серьезно к исследованиям этого мира».
Дедушкой нанотехнологий можно считать греческого философа Демокрита. 2400 лет назад он впервые использовал слово “атом” для описания самой малой частицы вещества.
1905 - Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказал, что размер молекулы сахара составляет примерно 1 нанометр.
1931 - Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.
1959 - Американский физик Ричард Фейнман впервые опубликовал работу, где оценивались перспективы миниатюризации. Основные положения нанотехнологий были намечены в его легендарной лекции “Там внизу - много места” (“There’s Plenty of Room at the Bottom”), произнесенной им в Калифорнийском Технологическом Институте. Фейнман научно доказал, что с точки зрения фундаментальных законов физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов. Тогда его слова казались фантастикой только лишь по одной причине: еще не существовало технологии, позволяющей оперировать отдельными атомами (то есть опознать атом, взять его и поставить на другое место). Чтобы стимулировать интерес к этой области, Фейнман назначил приз в $1000 тому, кто впервые запишет страницу из книги на булавочной головке, что, кстати, осуществилось уже в 1964 году.
1968 - Альфред Чо и Джон Артур, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанообработки поверхностей.
1974 - Японский физик Норио Танигучи ввел в научный оборот слово “нанотехника”, предложив называть так механизмы размером менее 1 микрона.
1981 - Германские физики Герд Бинниг и Генрих Рорер создали сканирующий туннельный микроскоп - прибор, позволяющий осуществлять воздействие на вещество на атомарном уровне. Через четыре года они получили Нобелевскую премию.
1985 - Американские физики Роберт Керл, Хэрольд Крото и Ричард Смолли создали технологию, позволяющую точно измерять предметы диаметром в один нанометр.
1986 - Создан атомносиловой микроскоп, позволяющий, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.
1986 - Нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер опубликовал книгу, в которой предсказал, что нанотехнология в скором времени начнет активно развиваться.
1989 - Дональд Эйглер, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.
1998 - Голландский физик Сеез Деккер создал нанотранзистор.
2000 - Администрация США объявила “Национальную нанотехнологическую инициативу” (National Nanotechnology Initiative). Тогда из федерального бюджета США было выделено $500 млн. В 2002 сумма ассигнований была увеличена до $604 млн. На 2003 год “Инициатива” запросила $710 млн., а в 2004 году правительство США приняло решение увеличить финансирование научных исследований в этой области до $3,7 млрд. в течение четырех лет. В целом, мировые инвестиции в нано в 2004 году составили около $12 млрд.
2004 - Администрация США поддержала “Национальную наномедицинскую инициативу” как часть National Nanotechnology Initiative.
Такая хронология событий не смогла не заинтересовать меня, и я в предоставляемом докладе постарался изложить заинтересовавшие меня факты и события с точки зрения неравнодушного школьника, понимающего, что будущее за новыми технологиями.

2. Стремительное развитие нанотехнологий вызвано еще и потребностями общества в быстрой переработке огромных массивов информации.
Сегодня прогресс в области нанотехнологии связан с разработкой наноматериалов для аэрокосмической, автомобильной, электронной промышленности.
Но постепенно все чаще упоминается, как перспективная область применения нанотехнологии, медицина. Это связано с тем, что современная технология позволяет работать с веществом в масштабах, еще недавно казавшихся фантастическими - микрометровых, и даже нанометровых. Именно такие размеры характерны для основных биологических структур - клеток, их составных частей (органелл) и молекул.

Сегодня можно говорить о появлении нового направления - наномедицины. Впервые мысль о применении микроскопических устройств (роботов-манипуляторов) в медицине была высказана в 1959 г. Р. Фейнманом. Манипуляторы открывают самые широкие возможности реанимации больных клеток организма, в том числе, человеческого, что некоторыми учеными-фантазерами уже рассматривается как возможность, наконец-то, обрести бессмертие. Впрочем, существует и очень негативная возможность дальнейшего развития нанотехнологий: в частности, если управление манипулятором окажется в руках избранных людей, власть этих людей над всеми остальными окажется безграничной.
Сегодня мы еще довольно далеки от описанного Фейнманом микроробота, способного через кровеносную систему проникнуть внутрь сердца и произвести там операцию на клапане. Но за последние несколько лет его предложения приблизились к реальности. Современные приложения нанотехнологий в медицине можно разделить на несколько групп:
. Наноструктурированные материалы, в т. ч., поверхности с нанорельефом, мембраны с наноотверстиями;
. Наночастицы (в т. ч., фуллерены и дендримеры);
. Микро- и нанокапсулы;
. Нанотехнологические сенсоры и анализаторы;
. Медицинские применения сканирующих зондовых микроскопов;
. Наноинструменты и наноманипуляторы;
. Микро- и наноустройства различной степени автономности.
Самый яркий и простой пример использования нанотехнологии в медицине и косметике — обыкновенный мыльный раствор, обладающий моющим и дезинфицирующим действием. В нем образуются наночастицы, мицеллы — частицы дисперсной фазы Золя (коллоидного раствора), окруженные слоем молекул или ионов дисперсной среды. Мыло — чудо нанотехнологии, уже бывшее таковым, когда никто и не подозревал о существовании наночастиц. Однако этот наноматериал не является главным для развития современных нанотехнологий в здравоохранении и косметологии.

Другим древнейшим применением нанотехнологии в косметологии оказался тот факт, что красящие вещества, использовавшиеся аборигенами Австралии для нанесения ярких боевых раскрасок, а также краска для волос древнегреческих красавиц также содержали наночастицы, обеспечивающие очень длительный и стойкий окрашивающий эффект. А теперь поговорим о развитии нанотехнологии.

На первом этапе развития нанотехнологии предпочтение отдавалось устройствам зондовой микроскопии. Эти устройства являются своеобразными глазами и руками нанотехнолога. В 21 веке нанотехнологии войдут во все области человеческой жизни. Это новое слово в науке, новые возможности, новое качество и уровень жизни. Бурное развитие нанотехнологий на мировом уровне - это их большая значимость в процессе развития цивилизации. Нанотехнологии и наноинженерия на сегодняшний день являются наиболее перспективным направлением в развитии российской и зарубежной науки. Наноматериалы стали причиной настоящего прорыва во многих отраслях и проникают во все сферы нашей жизни.
На их основе могут быть созданы товары и продукты, применение которых позволит модернизировать целые отрасли экономики. К числу объектов, которые мы сможем увидеть в ближайшее время, можно отнести наносенсоры для идентификации токсичных отходов химической и биотехнологической промышленности, наркотиков, боевых отравляющих веществ, взрывчатки, патогенных микроорганизмов, а также наночастичные фильтры и прочие очистные устройства, предназначенные для их удаления или нейтрализации. Другой пример перспективных наносистем близкого будущего — электрические магистральные кабели на углеродных нанотрубках, которые будут проводить ток высокого напряжения лучше медных проводов и при этом весить в пять-шесть раз меньше.
Наноматериалы позволят многократно снизить стоимость автомобильных каталитических конвертеров, очищающих выхлопы от вредных примесей, поскольку с их помощью можно в 15-20 раз снизить расход платины и других ценных металлов, которые применяются в этих приборах. Есть все основания считать, что наноматериалы найдут широкое применение в нефтеперерабатывающей промышленности и в таких новейших областях биоиндустрии, как геномика и протеомика.

Заглядывая же в отдаленное будущее, можно предположить, что нанотехнологии способны обеспечить человеку физическое бессмертие за счет того, что наномедицина сможет бесконечно регенерировать отмирающие клетки. Говоря о медицине…Она изменится неузнаваемо. Во-первых, наночастицы могут использоваться в медицине для точной доставки лекарств и управления скоростью химических реакций. Нанокапсулы с метками-идентификаторами смогут доставлять лекарства непосредственно к указанным клеткам и микроорганизмам, смогут контролировать и отображать состояние пациента, следить за обменом веществ и многое другое. Это позволит эффективнее бороться с онкологическими, вирусными и генетическими заболеваниями. Представьте себе, что вы подхватили грипп (при этом вы даже еще не знаете, что его подхватили). Тут же среагирует система искусственно усиленного иммунитета, десятки тысяч нанороботов начнут распознавать (в соответствии со своей внутренней базой данных) вирус гриппа, и за считанные минуты ни одного вируса у Вас в крови не будет! Или у вас начался ранний атеросклероз, искусственные клетки начинают чистить механическими и химическими путями Ваши сосуды. Во-вторых, возможно создание нанороботов-врачей, способных “жить” внутри человеческого организма, устраняя все возникающие повреждения или предотвращая их возникновение. Последовательно проверяя и, если надо, “исправляя” молекулы, клетку за клеткой, орган за органом, наномашины вернут здоровье любому больному, а затем просто не допустят никаких заболеваний и патологий, в том числе генетических. Теоретически это позволит человеку жить сотни, а может быть, тысячи лет. В-третьих, появится возможность быстрого анализа и модификации генетического кода, простое конструирование аминокислот и белков, создание новых видов лекарств, протезов, имплантатов. В этой области рядом исследователей уже проводится проверка различных наноматериалов на совместимость с живыми тканями и клетками.

Сегодня о нанороботах мы можем только фантазировать, но, тем не менее, мы уже имеем значительный прогресс в этой области. Так, «нанороботами» могут послужить наночастицы некоторых веществ. Например, серебра. Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы.
Как показал эксперимент, ничтожные концентрации наночастиц уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом. Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается! Дело в том, что оболочка микроорганизмов состоит из особых белков, которые при поражении наночастицами перестают снабжать бактерию кислородом. Несчастный микроорганизм больше не может окислять свое «топливо» - глюкозу - и гибнет, оставшись без источника энергии. Вирусы, вообще не имеющие никакой оболочки, тоже получают свое при встрече с наночастицей. А вот клетки человека и животных имеют более «высокотехнологичные» стенки, и наночастицы им не страшны. В настоящий момент проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах.

Например, фирма “Гелиос” выпускает зубную пасту “Знахарь” с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии “элитной” косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.
Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

По прогнозам журнала Scientific American, уже в ближайшем будущем появятся медицинские устройства размером с почтовую марку. Их достаточно будет наложить на рану. Это устройство самостоятельно проведет анализ крови, определит, какие медикаменты необходимо использовать, и впрыснет их в кровь. Нужно отметить, что появление высоких технологий из-за их высокой стоимости привнесли в здравоохранение ряд новых проблем, в том числе морально-этического свойства, связанных с наличием и доступностью медицинских услуг для широких слоев населения. Тем не менее, как бы сильно ни развивалась научно-техническая основа медицины, главными факторами исцеления больного всегда были и останутся профессиональная подготовка, этические и человеческие качества врача.

3. В общее развитие нанотехнологий внесли и продолжают вносить свою лепту российские ученые. Одной из передовых областей России по наноисследованиям является Воронежская область. На сегодня она обладает определенным потенциалом в сфере наноиндустрии - это научно-исследовательские разработки вузов Воронежской области и ряд инновационных проектов и технологических разработок предприятий промышленности. Отраслевые приоритеты региона сосредоточены в энергетике и топливной промышленности, приборостроении и электронике, авиакосмической промышленности.

3.1 Воронежская область обладает высоким промышленным потенциалом, а треть населения Воронежа имеет высшее образование. Город по праву считается интеллектуальным центром Центрального Черноземья. В ведущих вузах области - Воронежском государственном университете, Воронежском государственном техническом университете и ряде других - успешно проводят научно-исследовательские разработки в сфере наноматериалов и наноэлектроники. Инновационные проекты и технологические разработки есть и у воронежских предприятий, где наибольшее внимание уделяется перспективным работам по термоэлектричеству и созданию элементной базы на нитевидных нанокристаллах кремния, а также по другой близкой тематике. Так, ЗАО «Воронежский ИТЦ» совместно с ВГТУ успешно занимаются НИОКР по разработке высокоэффективного нанокомпозитного солнечного элемента. В технопарке «Содружество» реализуется проект «Разработка технологического оборудования для получения фуллереносодержащей смеси, нановолокон и нанотрубок». Создаются центры развития наноиндустрии с участием высокотехнологичных предприятий и вузов области. Среди таких центров можно выделить: Центр «Фонон» на базе ОАО «Корпорация НПО РИФ» и «Промышленные нанотехнологии» на базе ООО «Космос-Нефть-Газ».

Промышленные предприятия в сфере нанотехнологий наибольшее внимание уделяют разработкам по направлениям: термоэлектричество, разработка элементной базы на нитевидных нанокристаллах кремния и др. Создаются малые инновационные предприятия, специализирующиеся в сфере развития нанотехнологий.
На базе разработок ВГУ создано ООО «Защита от коррозии», продвигающее на рынок новую технологию нанесения покрытия из наноструктур цинка. Работает в этом направлении и ОАО «Рикон», создавшее принципиально новые конденсаторы с применением фуллеренов.

ЗАО «Воронежский ИТЦ» совместно с ВГТУ занимается НИОКР по разработке высокоэффективного нанокомпозитного солнечного элемента. В технопарке «Содружество» реализуется проект «Разработка технологического оборудования для получения фуллереносодержащей смеси, нановолокон и нанотрубок».

Химики из Воронежского государственного аграрного университета изобрели долговечный бытовой фильтр для воды, аналогов которому, по их утверждению, в мире нет. В основу фильтра, над созданием которого трудились сотрудники ВГАУ и фирмы «Аква», положены нанотехнологии. По словам руководителя проекта, заведующего лабораторией химии факультета технологии и товароведения Ивана Горелова, синтез фильтрующего материала производится из наночастиц диоксида кремния, углерода и серебра. Предварительно они готовятся как сырье, затем совмещаются в строгой пропорции, подсушиваются, чтобы сделать гранулы, и обжигаются при температуре 1000ºС без доступа кислорода.

По словам ученых, уникальность нового фильтра, помимо использования наночастиц, заключается в том, что он удаляет техногенные примеси — прежде всего, соединения железа, нефтепродукты, а также ионы тяжелых металлов (свинец, ртуть, цинк, кадмий, медь). Природный минеральный состав воды остается без изменений.
Нанокомпозит, которым снабжен фильтр нашей разработки, обладает универсальными свойствами. В сухом состоянии он способен поглощать пары бензола, толуола, гексана, ацетона, а также дым. Поэтому может найти применение, например, в защитных устройствах при чрезвычайных ситуациях для защиты личного состава спасателей и для защиты рабочего персонала в лакокрасочной промышленности.
К фильтрам уже проявили интерес заказчики из Европы и Азии. Промышленную линию по их производству на базе ВГАУ введут в эксплуатацию уже в начале 2013 года. Создаются центры развития наноиндустрии с участием высокотехнологичных предприятий и вузов области.

3.2 В настоящее время в области насчитывается 14 предприятий и организаций, работающих в сфере индустрии нанотехнологий: ОАО «Воронежсинтезкаучук», ОАО «Корпорация НПО «РИФ», ОАО «ВЗПП-С», ОАО «КБХА», ОАО «Концерн «Созвездие», Воронежский государственный университет, Воронежский государственный технический университет, ООО «Комнет», ОАО «Завод «Водмашоборудование» и др. В регионе уже реализуется около 20 промышленных проектов в области наноиндустрии. А на стадии разработки только в Воронежском госуниверситете имеется около 30 проектов.
Основными направлениями применения НИОКР наноиндустрии Воронежской области являются следующие области:
. Нанотехнологии в энергетике и топливной промышленности. Предприятия и организации Воронежской области реализуют проекты, направленные на промышленное производство поликремния для солнечных батарей, термоэлектрических материалов для повышения энергоэффективности машин и механизмов, наномодификацию присутствующих на рынке типов топлива и жидкостей.
. Нанотехнологии в приборостроении и электронике. Разработки в области наноиндустрии Воронежской области направлены на разработку и производство сканирующих электронно и атомно-силовых микроскопов, микросхем, печатных плат, шлейфовых кабелей.
. Нанотехнологии в авиакосмической отрасли. В рамках данной отрасли в Воронежской области предприятиями и организациями в сфере нанотехнологий проводятся опытные испытания и готовится производство жаропрочных и других наномодифицированных композитов, принципиально новых материалов для ракетостроения и авиапромышленности.
. Нанотехнологии в машиностроении. В обозначенной отрасли предприятиями и организациями наноиндустрии Воронежской области ведутся работы по производству систем для создания наноматериалов.
. Нанотехнологии в медицине. Предприятия и организации наноиндустрии Воронежской области реализуют проекты, направленные на создание новых способов лечения и диагностики больных. Значительная доля перспективных проектов направлена на создание технологий импортозамещения иностранных лекарственных средств.
. Нанотехнологии в промышленности строительных материалов. В строительной промышленности в последние годы практически не ведется внедрение новых технологий. Между тем, предприятия и организации наноиндустрии Воронежской области обладают значительным потенциалом разработок, призванных значительно улучшить качество строительства в области и РФ.
. Нанотехнологии в пищевой промышленности. Актуальными разработками предприятий и организаций наноиндустрии Воронежской области являются технологии очистки воды, модификации продуктов питания для улучшения их питательных свойств.

3.3 В Воронежской области в настоящее время активно внедряется нанопродукция, качественно улучшающая состояние здоровья воронежцев. Примером может послужить продукция компании Nano Hightech, в частности - шестигранник, сделанный из нанокерамики. Нанокерамика - это уникальный материал, синтезирующий в себе несколько основных компонентов: Вулканические породы, Камень Кым-Ган, природный Германий, Титан, Пуццолан и Бародон, измельченные до наноразмерных единиц. Благодаря этому Компания Нано Хайтек Хангук Нано Медикал произвела уникальный продукт - Нанокерамику (НК). Полученное сырье проходит процесс прессовки, формовки и обжиг при температуре 1300°С в электропечи. Затем из обожженных и полированных шестигранников вручную формируются плотные мозаичные поля, которые используются в производстве оборудования. Данный шестигранник предназначен для снятия боли, устранения неприятных запахов и структурирования жидкостей.

Как заверяет нас производитель, он:
. активизирует процессы микроциркуляции,
. восстанавливает нарушенный энергообмен,
. обладает бактерицидными свойствами,
. ускоряет процесс заживления ран, ссадин, ушибов, ожогов,
. надолго сохраняет свежесть продуктов, устраняет неприятные запахи (при помещении Шестигранника в холодильник, шкаф или обувь),
. способствует повышению плодородия почвы (при поливе заряженной водой или помещении Шестигранника в почву),
. воздействует на структуру жидкостей,
. снимает боль и воспаление.
Конечно, продукции, рассчитанной на массового потребителя, пока что не так много, но прогресс не стоит на месте, и можно смело предположить, что в ближайшие 5-10 лет мы сможем лицезреть новые потребительские продукты.

Заключение
Как уже неоднократно заявлялось, нанотехнология открывает большие перспективы при разработке новых материалов, совершенствовании связи, развитии биотехнологии, микроэлектроники, энергетики и вооружений. Среди наиболее вероятных научных прорывов эксперты называют увеличение производительности компьютеров, восстановление человеческих органов с использованием вновь воссозданной ткани, получение новых материалов напрямую из заданных атомов и молекул и появление новых открытий в химии и физике, способных оказать революционное воздействие на развитие цивилизации.
Предполагается, что нанотехнологии позволят решить энергетические проблемы посредством применения более эффективного освещения, топливных элементов, водородных аккумуляторов, солнечных элементов, распределения источников энергии, децентрализации производства и хранения энергии за счет качественного обновления электроэнергетической системы.
Самое главное, чтобы понятие «нанотехнология» не стало лазейкой, за которой будут прятаться непорядочные ученые, предприниматели, фирмы и чиновники.
В настоящее время на рынке продаются только скромные достижения нанотехнологии, вроде самоочищающихся покрытий, "умной одежды" и упаковок, позволяющих дольше сохранять свежесть продуктов питания. Однако ученые предсказывают триумфальное шествие нанотехнологии в недалеком будущем, опираясь на факт ее постепенного проникновении во все отрасли производства.
Как уже говорилось, возможности использования нанотехнологий неисчерпаемы: начиная от микроскопических компьютеров, убивающих раковые клетки, и заканчивая автомобильными двигателями, не загрязняющими окружающую среду, однако большие перспективы чаще всего несут с собой и большие опасности. Взять хотя бы достижения в области атомной энергии и печальные последствия Чернобыльской аварии или трагедию Хиросимы и Нагасаки. Ученые всего мира сегодня должны четко представлять себе, что подобные “неудачные” опыты или халатность в будущем могут обернуться трагедией, ставящей под угрозу существование всего человечества и планеты в целом.
В связи с этим становится понятно, почему с самого появления нанотехнологии ее развитию мешают страхи, часть которых однозначно относится к разряду научной фантастики, но некоторые, однако ж, вовсе не лишены основания.
В ближайшем будущем планируется создание «умных» материалов с памятью, самозалечивающихся материалов, нанороботов, существующих внутри человеческого тела и обеспечивающих его нормальное функционирование, освоение дальних районов космоса нанороботами и т.д.
Первые прогнозы путей развития нанотехнологии, воспринимавшиеся как фантастический кинофильм, оправдываются, причем с опережением времени.
Так, использование нанотехнологий в биофизике переживает самый начальный этап своего развития. Но, несмотря на это, уже сегодня понятно, что именно внедрение нанотехнологических и биофизических методов в «классическую» биологию позволит добиться самых невероятных и удивительных результатов. Многие исследователи даже полагают, что биологический вид «Человека разумного» в течение ближайшего столетия будет практически полностью заменен новым биологическим видом. Этот человек будет представлять из себя сложнейший синтез генных модификаций и имплантаций технологических систем. Электронные компоненты, размещаемые непосредственно в человеческом организме, будут обеспечивать непрерывную связь с сетями, подобными Internet. Но пока что это лишь предсказания возможного будущего, быть может, более далекого, чем бы нам хотелось, но, тем не менее, завораживающего своими фантастическими возможностями.
Моя первая попытка знакомства с нанотехнологиями и наноидеями состоялась. Она утвердила меня в мысли о дальнейшем изучении материла в данной области. Я уверен, что, став студентом, я не только не потеряю интерес к поставленной проблеме, но и приложу все усилия для анализа проблемы с новых вершин познания. Ведь уверенность в том, что перспективы нанотехнологий грандиозны для нашей цивилизации, для нашего будущего - это не просто уверенность… Это вера в науку, в ее торжество! Гонка технологий задает темп жизни, и для того, чтобы быть успешной современной личностью, нужно не просто шагать в ногу со временем, а опережать его! 

Литература:
1. Алферов Ж.И., Асеев А.Л., Гапонов С.В., Коптев П.С., и др., «Наноматериалы и нанотехнологии»// Микросистемная техника. 2003.
2. Балабанов В., «Нанотехнологии. Наука будущего». 2009.
3. Карасёв В.А., «Генетический код: новые горизонты». 2003.
4. Пул Ч., Оуанс Ф., «Нанотехнологии»// М. Техносфера. 2004.
5. Рыбалкина М., «Нанотехнологии для всех». 2005.
6. Светухин В.В., Разумовская И.В., и др., «Введение в нанотехнологии.Физика». 2008.
7. Третьяков Ю.Д., «Нанотехнологии. Азбука для всех». 2008.
8. Feynman R.P., "There"s Plenty of Room at the Bottom,"Engineering and Science (California Institute of Technology), February 1960, pp.22- 36. Русский перевод опубликован в журнале "Химия и жизнь", № 12. 2002.
9. Журнал «Российские нанотехнологии», Т.5, № 1-2. 2010.
10. Газета «Промышленные вести», №1. 2010.

Нанотехнология – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Внизу полным-полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма.

Последний этап – полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле – таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. В ходе теоретического исследования данной возможности появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation».

На что способны нанотехнологии?

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК‑нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии –наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня. Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций.

  • ДНК‑компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
  • Атомно‑силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна‑осциллятор – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

10 нанотехнологий с удивительным потенциалом

Попробуйте вспомнить какое-нибудь каноническое изобретение. Вероятно, кто-то сейчас представил себе колесо, кто-то самолет, а кто-то и «айпод». А многие ли из вас подумали об изобретении совсем нового поколения – нанотехнологиях? Этот мир малоизучен, но обладает невероятным потенциалом, способным подарить нам действительно фантастические вещи. Удивительная вещь: направление нанотехнологий не существовало до 1975 года, даже несмотря на то, что ученые начали работать в этой сфере гораздо раньше.

Невооруженный глаз человека способен распознать объекты размером до 0,1 миллиметра. Мы же сегодня поговорим о десяти изобретениях, которые в 100 000 раз меньше.

Электропроводимый жидкий металл

За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».

«Мягкий сплав ведет себя как умная форма, способная при необходимости самостоятельно деформироваться с учетом изменяющегося окружающего пространства, по которому он движется. Прямо как мог делать киборг из популярной научно-фантастической киноленты», – делится Джин Ли из университета Цинхуа, один из исследователей, занимавшихся данным проектом.

Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.

Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.

Нанопластыри

Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.

Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле – раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.

Нанофильтр для воды

При использовании этой пленки в сочетании с тонкой сеткой из нержавеющей стали нефть отталкивается, и вода в этом месте становится первозданно чистой.

Что интересно, на создание нанопленки ученых вдохновила сама природа. Листья лотоса, также известного как водяная лилия, обладают свойствами, противоположными свойствам нанопленки: вместо нефти они отталкивают воду. Ученые уже не первый раз подглядывают у этих удивительных растений их не менее удивительные свойства. Результатом этого, например, стало создание супергидрофобных материалов в 2003 году. Что же касается нанопленки, исследователи стараются создать материал, имитирующий поверхность водяных лилий, и обогатить его молекулами специального очищающего средства. Само покрытие невидимо для человеческого глаза. Производство будет недорогим: примерно 1 доллар за квадратный фут.

Очиститель воздуха для подводных лодок

Вряд ли кто-то задумывался о том, каким воздухом приходится дышать экипажам подводных лодок, кроме самих членов экипажа. А между тем очистка воздуха от двуокиси углерода должна производиться немедленно, так как за одно плаванье через легкие команды подлодки одному и тому же воздуху приходится проходить сотни раз. Для очистки воздуха от углекислого газа используют амины, обладающие весьма неприятным запахом. Для решения этого вопроса была создана технология очистки, получившая название SAMMS (аббревиатура от Self-Assembled Monolayers on Mesoporous Supports). Она предлагает использование специальных наночастиц, помещенных внутрь керамических гранул. Вещество обладает пористой структурой, благодаря которой оно поглощает избыток углекислого газа. Различные типы очистки SAMMS взаимодействуют с различными молекулами в воздухе, воде и земле, однако все из этих вариантов очисток невероятно эффективны. Всего одной столовой ложки таких пористых керамических гранул хватит для очистки площади, равной одному футбольному полю.

Нанопроводники

Исследователи Северо-Западного университета (США) выяснили, как создать электрический проводник на наноуровне. Этот проводник представляет собой твердую и прочную наночастицу, которая может быть настроена на передачу электрического тока в различных противоположных направлениях. Исследование показывает, что каждая такая наночастица способна эмулировать работу «выпрямителя тока, переключателей и диодов». Каждая частица толщиной 5 нанометров покрыта положительно заряженным химическим веществом и окружена отрицательно заряженными атомами. Подача электрического разряда реконфигурирует отрицательно заряженные атомы вокруг наночастиц.

Потенциал у технологии, как сообщают ученые, небывалый. На ее основе можно создавать материалы, «способные самостоятельно изменяться под определенные компьютерные вычислительные задачи». Использование этого наноматериала позволит фактически «перепрограммировать» электронику будущего. Аппаратные обновления станут такими же легкими, как и программные.

Нанотехнологическое зарядное устройство

Когда эту штуку создадут, то вам больше не потребуется использовать никакие проводные зарядные устройства. Новая нанотехнология работает как губка, только впитывает не жидкость. Она высасывает из окружающей среды кинетическую энергию и направляет ее прямо в ваш смартфон. Основа технологии заключается в использовании пьезоэлектрического материала, который генерирует электричество, находясь в состоянии механического напряжения. Материал наделен наноскопическими порами, которые превращают его в гибкую губку.

Официальное название этого устройства – «наногенератор». Такие наногенераторы могут однажды стать частью каждого смартфона на планете или же частью приборной панели каждого автомобиля, а возможно, и частью каждого кармана одежды – гаджеты будут заряжаться прямо в нем. Кроме того, технология имеет потенциал использования на более масштабном уровне, например, в промышленном оборудовании. По крайней мере так считают исследователи из Висконсинского университета в Мадисоне, создавшие эту удивительную наногубку.

Искусственная сетчатка

Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.

Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать. Nano Retina – не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.

Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.

Светящаяся одежда

Шанхайские ученые разработали светоотражающие нити, которые можно использовать при производстве одежды. Основой каждой нити является очень тонкая проволока из нержавеющей стали, которую покрывают специальными наночастицами, слоем электролюминесцентного полимера, а также защитной оболочкой из прозрачных нанотрубок. В результате получаются очень легкие и гибкие нитки, способные светиться под воздействием своей собственной электрохимической энергии. При этом работают они на гораздо меньшей мощности, по сравнению с обычными светодиодами.

Недостаток технологии заключается в том, что «запаса света» у ниток хватает пока всего лишь на нескольких часов. Однако разработчики материла оптимистично считают, что смогут увеличить «ресурс» своего продукта как минимум в тысячу раз. Даже если у них все получится, решение другого недостатка пока остается под вопросом. Стирать одежду на основе таких нанониток, скорее всего, будет нельзя.

Наноиглы для восстановления внутренних органов

Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.

Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.

Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения.

Трехмерная химическая печать

Химик Иллинойского университета Мартин Берк – настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.

Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.

Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то, что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма. «Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», – говорит Кристен Кулиновски. – Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 – 2010 годы» составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологій», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок. В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

В современном искусстве возникло новое направление «наноарт» (наноискусство) – вид искусства, связанный с созданием художником скульптур (композиций) микро- и нано-размеров (10 −6 и 10 −9 м, соответственно) под действием химических или физических процессов обработки материалов, фотографированием полученных нано-образов с помощью электронного микроскопа и обработкой черно-белых фотографий в графическом редакторе.

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: «Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал». Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931 году. Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»).

Главный герой романа «Трансчеловек» Ю. Никитина – руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастических сериалах «Звёздные врата: SG-1» и «Звёздные врата: Атлантида» одними из самых технически развитых рас являются две расы «репликаторов», возникших в результате неудачных опытов с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась» с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает всё на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих всё на своём пути.


Министерство образования Республики Мордовия

ГБОУ РМ СПО (ССУЗ) «Саранский техникум пищевой и перерабатывающей промышленности»


ИНФОРМАЦИОННЫЙ ПРОЕКТ

по физике на тему:

студент гр. № 16 Романов Александр

Руководитель:

преподаватель физики

Рязина Светлана Егоровна

Саранск 2012

Объект исследования: «Н анотехнологии»

Цель исследования:

Раскрыть основные направления развития нанотехнологий, показать положительные и отрицательные аспекты исследуемой области.

Задачи исследования:


  • Выяснить по каким основным направлениям развивается данная область.

  • Рассмотреть области применения нанотехнологий.

  • Исследовать влияние нанотехнологий на экологию.
Методы исследования: анализ научной литературы по теме, анализ информации СМИ, обобщение, систематизация.


5. Применение нанотехнологий


  • медицина

  • промышленность

  • сельское хозяйство

  • биология

  • освоение космоса

  • военное дело

  • пищевая промышленность
6. Сколько стоят нанотехнологии

7. Безопасность нанотехнологий

8. Нанотехнологии и экология

9. Нанотехнологии уже давно вокруг нас

10.Вывод

11. Мордовия территория НАНО

1.Нанотехнологии: место среди других наук

Слышали ли вы о нанотехнологиях? Я думаю да, и неоднократно. Нанотехнологии - высокотехнологичная отрасль, работающая с отдельными атомами и молекулами. Такая сверхточность позволяет на качественно новом уровне использовать законы природы на благо человека. Разработки в области нанотехнологий находят применение практически в любой отрасли: в медицине, машиностроении, геронтологии, промышленности, сельском хозяйстве, биологии, кибернетике, электронике, экологии. Нанотехнологии занимают особое место среди других наук. С помощью нанотехнологии возможно осваивать космос очищать нефть, победить многие вирусы, создавать роботов, защищать природу, построить сверхбыстрые компьютеры. Можно сказать, что развитие нанотехнологий в XXI веке изменит жизнь человечества больше, чем освоение письменности, паровой машины или электричества. Наномир сложен и пока еще сравнительно мало изучен, и все же не столь далек от нас, как это казалось несколько лет назад. В своей работе я постараюсь популярно объяснить сущность нанотехнологий и рассказать о достижениях в этой отрасли науки. Так как считаю ее наиболее актуальной и востребованной на сегодняшний день.

Что же такое нанотехнологии и «с чем их едят»

Приставка «нано» (по-гречески- «карлик») означает «одна миллиардная доля». То есть один нанометр (1 нм)- одна миллиардная доля метра (10–9 м). Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по размеру как копеечная монета и Земной шар. Или уменьшим слона до размеров микроба (5000 нм) - тогда блоха у него на спине станет величиной как раз в нанометр. А если бы рост человека вдруг уменьшился до нанометра, то мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалась бы нам тогда равной 170 километрам. Нанометрами измеряются лишь самые примитивные существа - вирусы (их длина в среднем 100 нм). Живая природа заканчивается на рубеже примерно в 10 нм - такие размеры имеют сложные молекулы белков. Простые молекулы в десятки раз меньше. Величина атомов - несколько ангстрем (1 ангстрем = 0,1 нм). Например, диаметр атома кислорода - 0,14 нм. Здесь проходит нижняя граница наномира, мира наномасштабов - от сотен до едениц нанометров. Именно в наномире идут процессы фундаментальной важности - совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи. Вообще говоря, нанотехнологии не являются самостоятельным разделом науки. Скорее, это именно комплекс прикладных технологий, фундаментальные основы которых изучаются в таких дисциплинах, как коллоидная химия, физика поверхности, квантовая механика, молекулярная биология и т. п. Что такое нано? Приставка «нано» («нанос» по-гречески - карлик) означает «одна миллиардная доля». Один нанометр (1 нм) – одна миллиардная доля метра (10Љ м). Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по масштабу как копеечная монета и земной шар (кстати, если каждый житель Земли даст по монетке, этого вполне хватит, чтобы выложить цепочку вокруг экватора. Даже если некоторые, как обычно, пожадничают). Уменьшим слона до размеров микроба (5000 нм) – тогда блоха у него на спине станет величиной как раз в нанометр. Если бы рост человека вдруг уменьшился до нанометра, мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалась бы нам тогда равной… 170 километрам. Конечно, это только фантазии. Таких крошечных человечков и даже насекомых на свете быть не может. Нанометрами измеряются лишь самые примитивные существа – вирусы (их длина в среднем 100 нм). Живая природа заканчивается на рубеже примерно в десять нанометров – такие размеры имеют сложные молекулы белков, строительные блоки живого. Простые молекулы в десятки раз меньше. Величина атомов – несколько ангстрем (один ангстрем равен 0,1 нм). Например, диаметр атома кислорода – 0,14 нм. Здесь проходит нижняя граница наномира, мира наномасштабов – от сотен до единиц нанометров. Именно в наномире идут процессы фундаментальной важности – совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи. Нанотехнологии – это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда просто необыкновенные свойства. Нанотехнология позволяет поместить частицу лекарства в нанокапсулу и точно нацелить ее на пораженную болезнью клетку, не повредив соседние. Фильтр, пронизанный бесчисленными нанометровыми каналами, которые пропускают воду, но слишком тесны для примесей и микробов, - тоже продукт нанотехнологий. В лабораториях нанотехнологов испытываются суперматериалы – волокна из нанотрубок, которые в тысячи раз прочнее стали, покрытия, делающие предмет невидимым. Ну, а не столь фантастические виды нанопродукции уже продаются в магазинах. Слово «нанокосметика» все чаще звучит в рекламных роликах: наночастицы, входящие в состав косметических кремов, удаляют мельчайшие загрязнения с кожи. Известно, что микробы не любят серебро, но оказывается, что в виде наночастиц оно их просто приводит в ужас и обращает в бегство. Ткани с добавками такого серебра набирают популярность у истинных ценителей гигиены – из них даже делают «наноноски». Впрочем, многие из давно привычных вещей тоже невозможны без «нано»: процессор вашего компьютера содержит миллионы наноразмерных транзисторов, над дисплеем тоже, скорее всего, поработали нанотехнологи. «Нано» уже повсюду – военные используют нанотехнологии, медики используют нанотехнологии, даже производители продуктов питания, и те используют нанотехнологии.

2. Почему «нанотехнологии» - это интересно?

Нанотехнологии - это принципиально новые технологии, которые позволят в будущем получать любые макрообъекты (автомобили, рубашки, холодильники, дома) с помощью микроэлементов: малюсеньких роботов... В некотором смысле это звучит как фантастика (например, «выращивание» целого дома из микроэлементов с помощью нанороботов). Но принципиально это возможно, и наука осторожно, шаг за шагом подбирается к реализации столь удивительной мечты. Сборка нанороботами предметов обихода, да ещё за весьма ограниченное время, будет подобна сказочным сюжетам: «поставить за одну ночь дом» (или дворец), приказать скатерти-самобранке устроить пиршество - всё это сможет реализовать наука.

Эффект лотоса. Известно, что лотос действительно обладает необычными физико-химическими свойствами. Благодаря особому строению и очень высокой гидрофобности его листьев и лепестков цветы лотоса остаются удивительно чистыми. Но как ему удается добиться такой сверхгидрофобности. «Эффект Лотоса» был открыт в 1990-е гг. немецким ботаником, профессором Вильгельмом Бартлоттом. Он показал, что лепестки цветка покрыты крошечными шишечками или «наночастицами». Но лист вдобавок как бы намазан воском. Он вырабатывается в железах растения, что делает его совершенно неуязвимым для воды. На основе этого свойства и с помощью современных нанотехнологий были созданы, так называемые, лотосовые покрытия. При нанесении состава на поверхность образуется слой полимера, который преобразует молекулярную матрицу поверхности, при этом создается устойчивая атомная структура и формируется гидрофобная поверхность, обладающая сильными защитными свойствами. Эта поверхность способна противостоять любым воздействиям извне. Лотосовые покрытия незаменимы во многих сферах жизни человека. Создание стекол, с которых стекают мельчайшие капельки воды с растворенными частичками грязи. Создание плащей и другой специальной одежды. Создание самоочищающихся фасадов зданий. Это только единичные примеры использования уникального свойства лотоса.

Полезная пыль. Одним из самых массовых видов нанопродукции являются ультрадисперсные порошки. Измельчение веществ до наночастиц размерами в десятки или сотни нанометров часто придает им новые полезные качества. Дело в том, что такая наночастица состоит всего лишь из нескольких тысяч или миллионов атомов, поэтому все они оказываются близко к поверхности, на границе с внешним миром, и энергично с ним взаимодействуют. Суммарная поверхность частиц в таком нанопорошке становится огромной.

3. Основные этапы в развитии нанотехнологии

Интенсивные исследования в области нанотехнологий, активизировавшиеся на рубеже XX-XXI вв., стали двигателем происходящих ныне кардинальных изменений в промышленном производстве, привели к качественному скачку в развитии методов и средств обработки информации, получения электрической энергии, синтеза новых материалов на основе передовых научных подходов к познанию материи. Еще до наступления «наноэры» люди сталкивались с наноразмерными объектами и протекающими на атомно-молекулярном уровне процессами, использовали их на практике. Например, на наноуровне происходят биохимические реакции между макромолекулами, из которых состоит все живое, катализ в химическом производстве, брожение, идущее при изготовлении вина, сыра, хлеба. Однако так называемая «интуитивная нанотехнология», которая первоначально развивалась стихийно, без надлежащего понимания природы происходящего, не могла быть надежным фундаментом в будущем. Поэтому все большую актуальность приобретают научные изыскания, расширяющие горизонты наномира и направленные на создание принципиально новых продуктов и ноу-хау.

Системные исследования наноразмерных объектов берут свое начало в XIX в., когда в 1856-1857 гг. английский физик Майкл Фарадей впервые изучил свойства коллоидных растворов нанодисперсного золота и тонких пленок на его основе. Интересно отметить пример своеобразного предвидения, сделанного в 1881 г. писателем Николаем Лесковым в повествовании о тульском мастере Левше, сумевшем подковать «аглицкую» блоху «наногвоздями», которые можно было разглядеть только в «мелкоскоп» с увеличением в 5 млн раз, что соответствует возможностям современной высокоразрешающей микроскопии (на это первым обратил внимание российский ученый, специалист в области наноматериаловедения Ростислав Андриевский).

В первой половине ХХ в. зародилась и получила развитие техника исследования нанообъектов. В 1928 г. предложена схема устройства оптического микроскопа ближнего поля. В 1932 г. впервые создан просвечивающий электронный, а в 1938 г. - сканирующий электронный микроскоп. Во второй половине XX в. начала формироваться принципиальная научная и технологическая база для получения и применения наноструктур и наноструктурированных материалов.

В 1972 г. создан оптический микроскоп ближнего поля. В 1981 г. ученые Герд Бинниг и Генрих Рорер, работавшие в то время в филиале IBM в Цюрихе, предложили конструкцию сканирующего туннельного микроскопа. Позже, в 1986 г., за работы по сканирующей туннельной микроскопии они были удостоены Нобелевской премии по физике. В этом же 1986 г. ими был разработан атомно-силовой микроскоп.

В 1974 г. японский ученый Норио Танигучи при обсуждении проблем обработки веществ ввел термин «нанотехнология». В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Позже для характеристики материалов стали употреблять такие слова, как «наноструктурированный», «нанофазный», «нанокомпозиционный» и т.п.

В 1975 г. были теоретически рассмотрены принципиальные возможности существования особых видов наноразмерных объектов - квантовых точек и квантовых проволок.

В 1986 г. американский физик Эрик Дрекслер в своей книге «Машины созидания: пришествие эры нанотехнологии», основываясь на биологических моделях, ввел понятие о молекулярных роботах, а также развил предложенные Фейнманом идеи нанотехнологической стратегии «снизу вверх».

Мощным стимулом для активизации направления стало создание принципиально новых углеродных наноматериалов. Долгое время считалось, что существуют две единственные полиморфные модификации углерода - графит и алмаз. Однако, как оказалось, пределы полиморфных превращений данного элемента этим не ограничиваются, свидетельством чему являются весьма необычные по своей структуре и свойствам фуллерены и углеродные нанотрубки.

В 1997 г. из дифференцированной соматической клетки было впервые клонировано млекопитающее. Все это - яркий пример возможностей нанотехнологий применительно к биологическим объектам.

Другим примером приложения нанотехнологий, но уже к «неживым» предметам, является история разработки идеи квантовых компьютеров. В 1985 г. профессор Оксфордского университета Дэвид Дойч предложил математическую модель квантово-механического варианта машины Тьюринга. В 1994 г. П. Шор (фирма AT&T Bell) показал, что такая машина может получить практическое воплощение.

В частности, она оказалась эффективной в решении задач о разложении на множители больших чисел. В настоящее время алгоритм, предложенный Шором, широко применяется при создании различных типов квантовых компьютеров. В 1998 г. М. Такэути (фирма «Мицубиси Дэнки») провел принципиальные эксперименты по квантовым вычислительным системам с использованием фотонов. В 1999 г. Н. Накамура (фирма NEC) успешно изучил возможности практической работы квантового компьютера.

Нынешний период в развитии нанотехнологий характеризуется активизацией исследований и разработок в данной области, вложением в них существенных инвестиций. Особенно ярко эти тенденции проявляются в ведущих индустриальных странах мира. США в данном направлении занимают лидирующие позиции.

В 2001 г. была утверждена Национальная нанотехнологическая инициатива (ННИ), основная идея которой была сформулирована следующим образом: «Национальная нанотехнологическая инициатива определяет стратегию взаимодействия различных федеральных ведомств США с целью обеспечения приоритетного развития нанотехнологий, которая должна стать основой экономики и национальной безопасности США в первой половине XXI в.».

В 1996-1998 гг., до принятия ННИ, специальный комитет американского Центра оценки мирового состояния технологий осуществлял мониторинг и анализ развития нанотехнологий во всех странах и выпускал для научных, технических и административных специалистов США обзорные информационные бюллетени об основных тенденциях и достижениях. В 1999 г. состоялось заседание Межотраслевой группы по нанонауке, нанотехнике и нанотехнологиям (IWGN), результатом которого стала разработка прогноза исследований на ближайшие 10 лет. В том же году выводы и рекомендации IWGN были поддержаны Национальным советом по науке и технике при президенте США, после чего в 2000 г. было официально объявлено о принятии ННИ.

О большом внимании, которое уделяет мировая научная общественность проблемам развития нанотехнологий, свидетельствует присуждение в 2007 г. Нобелевской премии по физике за открытие и исследование одного из необычных явлений наномира - эффекта гигантского магнетосопротивления (ГМС).

Выделено семь основных направлений:


  1. Наноматериалы – научно-исследовательское направление, связанное с изучением и разработкой объёмных материалов плёнок и волокон, макроскопические свойства которых определяются химическим составом, строением, размерами и взаимным расположением наноразмерных структур. Объемные наноструктурированные материалы могут быть упорядочены в рамках направления по типу (наночастицы, нанопленки, нанопокрытия и др.) и по составу (металлические, органические, полупроводниковые идр.)

  2. Наноэлектроника – область электроники, связанная с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами, не превышающими 100 нм и приборов на основе таких устройств.
Данное направление охватывает физические принципы и объекты наноэлектроники, базовые элементывычислительных систем, объекты для квантовых вычислений и телекоммуникаций, а также устройства сверхплотной записи информации, наноэлектронные источники и детекторы.

  1. Нанофотоника – область фотоники, связанная с разработкой архитектур и технологий производства наноструктурированных устройств генерации, усиления, модуляции, передачи и детектирования электромагнитного излучения и приборов на основе таких устройств.
К этому направлению относятся физические основы генерации и поглощения излучения в различных диапозонах, полупроводниковые источники и детекторы электромагнитного излучения, наноструктурированные оптические волокна и устройства на их основе, светодиоды, твердотельные и оптические лазеры, элементы фотоники и коротковолновой нелинейной оптики.

  1. Нанобиотехнологии – целенаправленное использование биологических макромолекул для конструирования наноматериалов и наноустройств.
Нанобиотехнологии охватывают изучение воздействия наноструктур и материалов на биологические процессы и объекты с целью контроля и управления их биологическими или биохимическими свойствами.

  1. Наномедицина – практическое применение нанотехнологий в медицинских целях, включая научные исследования и разработки в области диагностики, контроля, адресной доставки лекарств, а также действия по восстановлению и реконструкции биологических систем человеческого организма с использованием наноструктур и наноустройств.

  2. Наноинструменты (нанодиагностика) – устройства и приборы, предназначенные для манипулирования наноразмерными объектами, измерения, контроля свойств и стандартизации производимых и используемых наноматериалов и наноустройств.

  3. Технологии и специальные устройства для создания и производства наноматериалов и наноустройств – область техники, связанная с разработкой технологий и специального оборудования для производства наноматериалов и наноустройств.
5. Применение нанотехнологий

Медицина

Сегодня можно говорить о появлении нового направления - наномедицины. Конечно, сегодня мы можем лишь выдвигать предположения о том, какими путями будет развиваться наука будущего, и медицинская наука в частности. Некоторые из этих предположений будут более обоснованы, другие менее. Так, можно более или менее уверенно ожидать, что современные методы получат и дальнейшее развитие. Например, микроустройства будут становиться все более миниатюрными и совершенными, а их функции - все более богатыми.

Методы медицинской диагностики постоянно улучшаются с помощью нанотехнологий. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Наноробот – капсула свободно плавает в человеческой крови, сталкиваясь с различными бактериями. Как она работает? Бактерии прилипают к поверхности рбота благодаря протеиновым маркерам. После распознавания бактерии, наноробот формирует ответный код, считываемый обычным лазером. Эта информация помогает врачам проводить экспресс – анализ, не проводя долговременное выращивание культуры. Каждому типу бактерий соответствует свой код. Врач может увидеть эту информацию даже через оптический микроскоп.

Основными областями применения нанотехнологий в медицине являются: технологии диагностики, лекарственные аппараты, протезирование и имплонтанты.

Ярким примером является открытие профессора Азиза. Людям, страдающим болезнью Паркинсона, через два крошечных отверстия в черепе внедряют в мозг электроды, которые подключены к стимулятору. Примерно через неделю больному вживляют и сам стимулятор в брюшную полость. Регулировать напряжение пациент может сам с помощью переключателя. С болью удается справиться уже в 80 % случаях:

У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей.

Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано. Мне кажется надо верить лишь сорока пациентам, которые избавились от невыносимой боли. И снова захотели жить. И если уже 8 лет этот метод практикуется и не сказывается негативно на здоровье больных, почему бы тогда не расширить его применение.

Еще одним революционным открытием является биочип – небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. В результате чего можно наблюдать. Преимуществом биочипов являются большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.

Цель исследования- практическое применение нанотехнологии.

Задачи:

    Собрать и изучить информацию о нанотехнологиях.

    Разработать анкету опроса.

    Провести анкетирование среди учащихся 5,7,10 классов МКОУ «Тегульдетская СОШ»

    Проанализировать полученные результаты, сформулировать выводы.

The aim of the work is to show the practical use of nanotechnology.

Objectives:

    To collect and study information about nanotechnology.

    To work out a questionnaire.

    To carry out interrogation of students from our school.

    To analyze the results, to make the conclusion.

Что такое нанотехнология?

За несколько прошедших десятилетий были найдены новые и более продвинутые энергетические технологии в области науки и инженерии с целью улучшения жизни во всем мире. Чтобы заставить следующие технологии пойти вперед технологий текущего времени, ученые и инженеры развивали новую область науки под названием нанотехнология.

Нанотехнология определяется, как наука и технология разработки электронных схем и устройств из отдельных атомов и молекул; или отрасль разработок, которая имеет дело с вещами меньше, чем 100 нанометров. Нанометр (нм) равняется одной миллиардной части метра, примерная ширина трех или четырех атомов. Для сравнения– средняя ширина человеческого волоса приблизительно 80,000 нанометров, а величина одной частицы составляет приблизительно 100 нанометров в ширину. Приставка nano - возникла от греческого слова nanos - означая "карлик ". Первоначально учёные использовали приставку, чтобы обозначить что-то очень маленькое, например «нанопланктон». Термин «нанотехнология» также часто используется для описания междисциплинных областей науки, посвященных исследованию и использованию явления наноразмера.


История.
История нанотехнологии началась в 50-ых и 60-ых годах 20 века, когда большинство инженеров мыслило масштабно. Это было время больших автомобилей, больших самолетов, больших мировых нефтяных танкеров, больших небоскребов и больших планов относительно отправления людей в космос. Огромные небоскрёбы, такие как Всемирный торговый центр были построены в главных городах мира. В то время как другие исследователи сосредоточились на создании мелких предметов. Изобретение транзистора в 1947 году и первой интегральной схемы в 1959 году начало эру электроники в миниатюре. Именно эти мелкие устройства создали основу для возникновения больших устройств, таких как космические корабли. После успешного расщепления атома перед Второй мировой войной, физики попытались найти частицы, из которых сделаны атомы, и силы, которые соединяют их в одно. В то же самое время химики работали над тем, чтобы объединить атомы в новые виды молекул и имели большой успех в преобразовании сложных молекул нефти во все виды пригодной пластмассы.

Наноматериалы.

Наноматериалы-это материалы, которые обладают уникальными способностями.Они могут пропускать электричество и тепло разными способами, менять цвет (частицы золота могут быть красными, синими, золотыми в зависимости от их размера). Эти особенные свойства уже используются для создания мобильных телефонов, компьютерных чипов.

Цель учёных использовать нанотехнологии для создания новых приборов, которые будут прочнее, легче, быстрее и эффективнее.

Наномедецина.

Наномедицина - область медицинского исследования, которое стремится использовать инструменты из области нанотехнологий для здоровья. Ученые говорят о том, что физические, химические, и биологические свойства материалов в наноразмере глобально отличаются от свойств тех же материалов в крупном размере (в обычном размере). Например, нанотехнология могла бы обеспечить новые технологии изготовления лекарств и новые пути доставки лекарства в ранее недоступные места в теле человека, таким образом, расширяя их потенциал. Маленькие датчики, которые диагностируют болезни в теле намного быстрее, чем существующие диагностические инструменты; это одни из многообещающих областей исследования.

Нанотехнологии это хорошо или плохо?


Нанотехнологии представляют потенциальную пользу для человечества, но также приносят серьёзные опасности. Некоторые наноматериалы являются токсичными для мышц и клеток человека.

В отличие от крупнейших частиц, наноматериалы могут быть поглощены митохондриями клеток и клеточного ядра. Исследования показали, что наноматериалы могут привести к потенциальной мутации и вызвать серьезные структурные повреждения митохондрий, в результате чего даже гибели клетки. Уместно внимательно изучить риски возможной токсичности наночастиц и других продуктов технологии, наибольшая опасность исходит от вредоносного или неразумного использования молекулярного производства.

What is Nanotechnology?

Over the past few decades, the development of new and more advanced energy technologies with the capability of improving life all over the world have been sought in the fields of science and engineering. In order to make the next leap forward from the current generation of technology, scientists and engineers have been developing a new field of science called Nanotechnology.

Nanotechnology is defined as the science and technology of building electronic circuits and devices from single atoms and molecules, or the branch of engineering that deals with things smaller than 100 nanometers. A nanometer (nm)is one billionth of a meter, roughly the width of three or four atoms. For scale comparison, the average human hair is about 80,000nanometers wide, and a single virus particle is about 100 nanometers in width. The prefix nano-comes from the Greek word nanos, meaning “dwarf”. Scientists originally used the prefix just to indicate “very small”, as in “nanoplankton”, but it now means one-billionth, just as milli-means one –thousandth, and micro-means one-millions.

The term Nanotechnology is also often used to describe the interdisciplinary fields of science devoted to the study and use of nanoscalephenomena.

History.

The story of nanotechnology begins in the 1950s and 1960s, when most engineers were thinking big, not small. This was the era of big cars, big atomic bombs, big jets, and big plans for sending people into outer space. Huge skyscrapers, like the World Trade Centre were built in major cities of the world. The world’s largest oil tankers, cruise ships, bridges, interstate highways, and electric power plants are all products of this era.

Other researches, however, focused on making things smaller. The invention of the transistor in 1947 and the first integrated circuit (IC) in 1959 launched an era of electronics miniaturization. It was these small devices that made large devices, such as spaceships, possible.

As electronics engineers focused on making things smaller, engineers and scientists from other fields also turned their focus to small things-atoms and molecules. After successfully splitting the atom in the years before World War II, physicists struggled to understand more about the particles from which atoms are made, and the forces that bind them together. At the same time, chemists worked to combine atoms into new kinds of molecules, and had great success converting the complex molecules of petroleum into all sorts of useful plastics.

Nanomaterials.

Nanomaterials-materials having unique properties arising from their nanoscale dimensions- can be stronger or lighter, or conduct heat or electricity in a different way. They can even change colour; particles of gold can appear red, blue or gold, depending on their size. These special attributes are already being used in a number of ways, such as in the manufacture of computer chips, CDs and mobile phones. Researches are progressively finding out more about the nonascale world of aim to use nanotechnologies to create new devices that are faster, lighter, stronger or more efficient.

Nanomedicine.

Nanomedcine is an area of biomedical research that seeks to use tools from the field of nanotechnology to improve health. Scientists say that the physical, chemical, and biological properties of materials at the nanoscale differ in fundamental and valuable ways from the properties of larger-sized matter. For example, nanotechnology could provide new formulations and new routes to deliver drugs to previously inaccessible sites in the body, thereby broadening a drug’s potential. Tiny sensors that detect diseases in the body far earlier than existing diagnostic tools, and pumps the size of molecules implanted to deliver lifesaving medications precisely where they are needed, are among the promising areas of research.

Is nanotechnology good or bad?

Nanotechnology offers potential benefits to mankind, but also brings severe dangers. Some nanomaterials have proved toxic to human tissue and cell cultures. Unlike large particles, nanomaterials may be absorbed by cell mitochondria and the cell nucleus. Studies have demonstrated that nanomaterials may cause potential DNA mutation and induce major structural damage to mitochondria, even resulting in cell death.

Although nanotechnology dates from the 1950s, the biggest changes have occurred in just the past few years. In the space of just a few years governments around the world have launched new research programs.

The more advanced nanotechnology developments expected in the next 10 years will most likely include solutions to repair and rearrange living cells.