Домой / Интернет / График корень из х. График функции квадратного корня, преобразования графиков. Повторение изученного материала

График корень из х. График функции квадратного корня, преобразования графиков. Повторение изученного материала

Рассмотрим функцию y=√x. График этой функции показан на рисунке ниже.

График функции y=√x

Как видите, график напоминает повернутую параболу, точнее одну из её ветвей. Мы получаем ветвь параболы x=y^2. Из рисунка видно, что график лишь один раз касается оси Оу, в точке с координатами (0;0).
Теперь стоит отметить основные свойства этой функции.

Свойства функции y=√x

1. Область определения функции явяется луч .

Ответ. D(f) = [-1,4].

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Квадратный корень как элементарная функция.

Квадратный корень - это элементарная функция и частный случай степенной функции при . Арифметический квадратный корень является гладким при , а нуле он непрерывен справа, но не дифференцируется.

Как функция комплексный переменный корень — двузначная функция, у которой листы сходятся в нуле.

Построение графика функции квадратного корня.

  1. Заполняем таблицу данных:

х

у

2. Наносим точки, которые мы получили на координатную плоскость.

3. Соединяем эти точки и получаем график функции квадратного корня:

Преобразования графика функции квадратного корня.

Определим, какие преобразования функции необходимо сделать для того, чтобы построить графики функций. Определим виды преобразований.

Вид преобразования

Преобразование

Перенос функции по оси OY на 4 ед. вверх.

внутреннее

Перенос функции по оси OX на 1 ед. вправо.

внутреннее

График приближается к оси OY в 3 раза и сжимается по оси .

График отдаляется от оси OX OY .

внутреннее

График отдаляется от оси OY в 2 раза и растягивается по оси .

Зачастую преобразования функций оказываются комбинированными.

Например , нужно построить график функции . Это график квадратного корня , который нужно перенести на одну единицу вниз по оси OY и на единицу вправо по оси ОХ и одновременно растянув в 3 раза его по оси OY .

Бывает непосредственно перед построением графика функции, нужны предварительные тождественные преобразования либо упрощения функций.

Приведены основные свойства степенной функции, включая формулы и свойства корней. Представлены производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел степенной функции.

Содержание

Степенная функция, y = x p , с показателем p имеет следующие свойства:
(1.1) определена и непрерывна на множестве
при ,
при ;
(1.2) имеет множество значений
при ,
при ;
(1.3) строго возрастает при ,
строго убывает при ;
(1.4) при ;
при ;
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

Доказательство свойств приводится на странице «Степенная функция (доказательство непрерывности и свойств) »

Корни - определение, формулы, свойства

Корень из числа x степени n - это число , возведение которого в степень n дает x :
.
Здесь n = 2, 3, 4, ... - натуральное число, большее единицы.

Также можно сказать, что корень из числа x степени n - это корень (то есть решение) уравнения
.
Заметим, что функция является обратной к функции .

Квадратный корень из числа x - это корень степени 2: .
Кубический корень из числа x - это корень степени 3: .

Четная степень

Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
.
Для квадратного корня:
.

Здесь важен порядок, в котором выполняются операции - то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

Нечетная степень

Для нечетных степеней , корень определен для всех x :
;
.

Свойства и формулы корней

Корень из x является степенной функцией:
.
При x ≥ 0 имеют место следующие формулы:
;
;
, ;
.

Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

Частные значения

Корень 0 равен 0: .
Корень 1 равен 1: .
Квадратный корень 0 равен 0: .
Квадратный корень 1 равен 1: .

Пример. Корень из корней

Рассмотрим пример квадратного корня из корней:
.
Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
.
Теперь преобразуем исходный корень:
.
Итак,
.


y = x p при различных значениях показателя p .

Здесь приводятся графики функции при неотрицательных значениях аргумента x . Графики степенной функции, определенной при отрицательных значениях x , приводятся на странице «Степенная функция, ее свойства и графики »

Обратная функция

Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

Если , то .

Производная степенной функции

Производная n-го порядка:
;

Вывод формул > > >

Интеграл от степенной функции

P ≠ - 1 ;
.

Разложение в степенной ряд

При - 1 < x < 1 имеет место следующее разложение:

Выражения через комплексные числа

Рассмотрим функцию комплексного переменного z :
f(z) = z t .
Выразим комплексную переменную z через модуль r и аргумент φ (r = |z| ):
z = r e i φ .
Комплексное число t представим в виде действительной и мнимой частей:
t = p + i q .
Имеем:

Далее учтем, что аргумент φ определен не однозначно:
,

Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
.

Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
.
То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, ... , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

Если p - рациональное, то его можно представить в виде:
, где m, n - целые, не содержащие общих делителей. Тогда
.
Первые n величин, при k = k 0 = 0, 1, 2, ... n-1 , дают n различных значений kp :
.
Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
.
Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, ... n-1 .

Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n - й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
.
Так, для квадратного корня, n = 2 ,
.
Для четных k, (- 1 ) k = 1 . Для нечетных k, (- 1 ) k = - 1 .
То есть квадратный корень имеет два значения: + и - .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также: