Домой / Психология / При равноускоренном движении материальной точки вдоль оси. Равноускоренное движение, вектор ускорения, направление, перемещение. Формулы, определение, законы - учебные курсы. Закон равноускоренного движения

При равноускоренном движении материальной точки вдоль оси. Равноускоренное движение, вектор ускорения, направление, перемещение. Формулы, определение, законы - учебные курсы. Закон равноускоренного движения

Равномерное прямолинейное движение. Скорость

Равномерным прямолинейным движением называют такое происходящее по прямолинейной траектории движение, при котором тело (материальная точка) за любые равные промежутки времени совершает одинаковые перемещения.

Перемещение тела в прямолинейном движении обычно обозначают s. Если тело движется по прямой только в одном направлении, модуль его перемещения равен пройденному пути, т.е. |s|=s. Для того, чтобы найти перемещение тела s за промежуток времени t, необходимо знать его перемещение за единичное время. С этой целью вводят понятие скорости v данного движения.

Скоростью равномерного прямолинейного движения называют векторную величину, равную отношению перемещения тела к промежутку времени, в течение которого было совершено это перемещение:

Направление скорости в прямолинейном движении совпадает с направлением перемещения.

Поскольку в равномерном прямолинейном движении за любые равные промежутки времени тело совершает равные перемещения, скорость такого движения является величиной постоянной (v=const). По модулю

Из формулы (1.2) устанавливают единицу скорости.

В настоящее время в качестве основной системы единиц используют Международную систему единиц (сокращенно СИ - система интернациональная). Об этой системе рассказано далее. Единицей скорости в СИ является 1 м/с (метр в секунду); 1 м/с есть скорость такого равномерного прямолинейного движения, при котором материальная точка за 1 с совершает перемещение 1 м.

Пусть ось Ох системы координат, связанной с телом отсчета, совпадает с прямой, вдоль которой движется тело, а x 0 является координатой начальной точки движения тела. Вдоль оси Ох направлены и перемещение s, и скорость v движущегося тела. Из формулы (1.1) следует, что s=vt. Согласно этой формуле, векторы s и vt равны, поэтому равны и их проекции на ось О х:

s x =v x ·t. (1.3)

Теперь можно установить кинематический закон равномерного прямолинейного движения, т. е. найти выражение для координаты движущегося тела в любой момент времени. Поскольку х=x 0 +s x , с учетом (1.3) имеем

х=x 0 + v x ·t. (1.4)

По формуле (1.4), зная координату x 0 начальной точки движения тела и скорость тела v (ее проекцию v x на ось О х), в любой момент времени можно определить положение движущегося тела. Правая часть формулы (1.4) является алгебраической суммой, так как и х 0 , и v x могут быть и положительными, и отрицательными (графическое представление равномерного прямолинейного движения дано далее).

Средняя и мгновенная скорости
прямолинейного неравномерного движения

Движение, при котором за равные промежутки времени тело совершает неравные перемещения, называют неравномерным (или переменным ). При переменном движении скорость тела с течением времени изменяется, поэтому для характеристики такого движения введены понятия средней и мгновенной скоростей.

Средней скоростью переменного движения v cp называют векторную величину, равную отношению перемещения тела s к промежутку времени t, за который было совершено это перемещение:

v cp =s/t. (1.5)

Средняя скорость характеризует переменное движение в течение только того промежутка времени, для которого эта скорость определена. Зная среднюю скорость за данный промежуток времени, можно определить перемещение тела по формуле s=v ср ·t лишь за указанный промежуток времени. Найти положение движущегося тела в любой момент времени с помощью средней скорости, определяемой по формуле (1.5), нельзя.

Как указывалось выше, когда тело движется по прямолинейной траектории в одну сторону, модуль его перемещения равен пройденному телом пути, т.е. |s|=s. В таком случае среднюю скорость определяют по формуле v=s/t, откуда имеем

s=v ср ·t. (1.6)

Мгновенной скоростью переменного движения называют скорость, которую тело имеет в данный момент времени (и следовательно, в данной точке траектории).

Выясним, каким способом можно определить мгновенную скорость тела. Пусть тело (материальная точка) совершает прямолинейное неравномерное движение. Определим мгновенную скорость v этого тела в произвольной точке С ее траектории (рис. 2).

Выделим маленький участок D s 1 этой траектории, включающий в себя точку С. Этот участок тело проходит за промежуток времени D t 1 . Разделив D s 1 на D t 1 , найдем значение средней скорости v cp1 =D s 1 /D t 1 на участке D s 1 . Затем для промежутка времени D t 2

Очевидно, что чем меньше промежуток времени D t, тем меньше длина участка D s, проходимого телом, и тем меньше значение средней скорости v cp =D s/D t отличается от значения мгновенной скорости в точке С. Если промежуток времени D t стремится к нулю, длина участка пути D s бесконечно уменьшается, а значение средней скорости v cp на этом участке стремится к значению мгновенной скорости в точке С. Следовательно, мгновенная скорость v есть предел, к которому стремится средняя скорость тела v cp , когда промежуток времени движения тела стремится к нулю:

v=lim(D s/D t). (1.7)

Из курса математики известно, что предел отношения приращения функции к приращению аргумента, когда последний стремится к нулю (если этот предел существует), представляет собой первую производную этой функции по данному аргументу. Поэтому формулу (1.7) запишем в виде

v=(ds/dt)=s" (1.8)

где символы d/dt или штрих справа вверху у функции обозначают производную этой функции. Следовательно, мгновенная скорость есть первая производная пути по времени.

Если аналитический вид зависимости пути от времени известен, с помощью правил дифференцирования можно определить мгновенную скорость в любой момент времени. В векторной форме

Равноускоренное прямолинейное движение. Ускорение

Такое прямолинейное движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, называют равноускоренным прямолинейным движением .

Быстроту изменения скорости характеризуют величиной, обозначаемой а и называемой ускорением . Ускорением называют векторную величину, равную отношению изменения скорости тела v-v 0 к промежутку времени t, в течение которого это изменение произошло:

a=(v-v 0)/t. (1.9)

Здесь V 0 - начальная скорость тела, т. е. его мгновенная скорость в момент начала отсчета времени; v - мгновенная скорость тела в рассматриваемый момент времени.

Из формулы (1.9) и определения равноускоренного движения следует, что в таком движении ускорение не изменяется. Следовательно, прямолинейное равноускоренное движение есть движение с постоянным ускорением (a=const). В прямолинейном равноускоренном движении векторы v 0 , v и а направлены по одной прямой. Поэтому модули их проекций на эту прямую равны модулям самих этих векторов, и формулу (1.9) можно записать в виде

a=(v-v 0)/t. (1.10)

Из формулы (1.10) устанавливается единица ускорения.
В СИ единицей ускорения является 1 м/с 2 (метр на секунду в квадрате); 1 м/с 2 - это ускорение такого равноускоренного движения, при котором за каждую секунду скорость тела увеличивается на 1 м/с.

Формулы мгновенной и средней скоростей
равноускоренного движения

Из (1.9) следует, что v= v 0 +at.

По этой формуле определяют мгновенную скорость v тела в равноускоренном движении, если его начальная скорость v 0 и ускорение а известны. Для прямолинейного равноускоренного движения эту формулу можно записать в виде

v=v 0 +at. (1.11)

Если v 0 =0, то

Получим выражение для средней скорости прямолинейного равноускоренного движения. Из формулы (1.11) видно, что v=v 0 при t=0, v 1 =v 0 +a при t=1, v 2 =v 0 +2a=v 1 +a при t=2 и т. д. Следовательно, в равноускоренном движении значения мгновенной скорости, которые тело имеет через равные промежутки времени, образуют такой ряд чисел, в котором каждое из них (начиная со второго) получается путем прибавления к предшествующему постоянного числа а. Это значит, что рассматриваемые значения мгновенной скорости образуют арифметическую прогрессию. Следовательно, средняя скорость прямолинейного равноускоренного движения может быть определена по формуле

v ср =(v 0 +v)/2, (1.13)

где v 0 - начальная скорость тела; v - скорость тела в данный момент времени.

Уравнение равноускоренного прямолинейного движения

Найдем кинематический закон прямолинейного равноускоренного движения. Для этого используем формулы (1.6), (1.11) и (1.13). Из них следует, что s=v ср ·t=(v 0 +v)·t/2=(2v 0 +at)·t/2,
следовательно,

s=v 0 ·t+at 2 /2. (1.14)

Если начальная скорость тела равна нулю (v 0 =0), то

s=at 2 /2. (1.15)

По формулам (1.14) и (1.15) определяют путь, пройденный телом в равноускоренном прямолинейном движении (модуль перемещения тела, не изменяющего направления своего движения). Для случая, когда тело движется по оси О х. из точки с координатой х 0 , из формулы (1.14) получаем уравнение, выражающее зависимость координаты этого тела от времени. Поскольку

x=x o +s x , а s x =v 0x ·t+a x t 2 /2,

х=x 0 +v 0x ·t+at 2 /2. (1.16)

Формула (1.16) есть уравнение прямолинейного равноуско-ренного движения (кинематический закон этого движения). Следует помнить, что в формуле (1.16) v 0x и а x могут быть как положительными, так и отрицательными, так как это проекции векторов v 0 и а на ось О х.

Связь перемещения тела с его скоростью

Установим связь модуля перемещения s тела, совершающего равноускоренное прямолинейное движение, с его скоростью. Из формулы (1.10) находим, что t=(v-v 0)/a. Подставив это выражение и формулу (1.13) в формулу (1.7), получим

s=[(v 0 +v)/2]·[(v-v 0)/a],

следовательно,

s=(v 2 -v 0 2)/(2а) или v 2 =v 0 2 +2as. (1.17)

Если начальная скорость тела равна нулю (v 0 =0), то v 2 =2as.

Механика


Формулы кинематики:

Кинематика

Механическое движение

Механическим движением называется изменение положения тела (в пространстве) относительно других тел (с течением времени).

Относительность движения. Система отсчета

Чтобы описать механическое движение тела (точки), нужно знать его координаты в любой момент времени. Для определения координат следует выбрать ­тело отсчета и связать с ним систему координат . Часто телом отсчета служит Земля, с которой связывается прямоугольная декартова система координат. Для определения положения точки в любой момент времени необходимо также задать начало отсчета времени.

Система координат, тело отсчета, с которым она связана, и прибор для измерения времени образуют систему отсчета , относительно которой рассматривается движение тела.

Материальная точка

Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой .

Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстояниями от него до других тел.

Траектория, путь, перемещение

Траекторией движения называется линия, вдоль которой движется тело. Длина траектории называется пройденным путем . Путь – скалярная физическая величина, может быть только положительным.

Перемещением называется вектор, соединяющий начальную и конечную точки траектории.

Движение тела, при котором все его точки в данный момент времени движутся одинаково, называется поступательным движением . Для описания поступательного движения тела достаточно выбрать одну точку и описать ее движение.

Движение, при котором траектории всех точек тела являются окружностями с центрами на одной прямой и все плоскости окружностей перпендикулярны этой прямой, называется вращательным движением.

Метр и секунда

Чтобы определить координаты тела, необходимо уметь измерять расстояние на прямой между двумя точками. Любой процесс измерения физической величины заключается в сравнении измеряемой величины с единицей измерения этой величины.

Единицей измерения длины в Международной системе единиц (СИ) является метр . Метр равен примерно 1/40 000 000 части земного меридиана. По современному представлению метр – это расстояние, которое свет проходит в пустоте за 1/299 792 458 долю секунды.

Для измерения времени выбирается какой-нибудь периодически повторяющийся процесс. Единицей измерения времени в СИ принята секунда . Секунда равна 9 192 631 770 периодам излучения атома цезия при переходе между двумя уровнями сверхтонкой структуры основного состояния.

В СИ длина и время приняты за независимые от других величины. Подобные величины называются основными .

Мгновенная скорость

Для количественной характеристики процесса движения тела вводится понятие скорости движения.

Мгновенной скоростью поступательного движения тела в момент времени t называется отношение очень малого перемещения Ds к малому промежутку времени Dt, за который произошло это перемещение:

Мгновенная скорость – векторная величина. Мгновенная скорость перемещения всегда направлена по касательной к траектории в сторону движения тела.

Единицей скорости является 1 м/с. Метр в секунду равен скорости прямолинейно и равномерно движущейся точки, при которой точка за время 1 с перемещается на расстояние 1 м.

Ускорение

Ускорением называется векторная физическая величина, равная отношению очень малого изменения вектора скорости к малому промежутку времени, за которое произошло это изменение, т.е. это мера быстроты изменения скорости:

Метр в секунду за секунду – это такое ускорение, при котором скорость тела, движущегося прямолинейно и равноускоренно, за время 1 с изменяется на 1 м/с.

Направление вектора ускорения совпадает с направлением вектора изменения скорости () при очень малых значениях промежутка времени, за который происходит изменение скорости.

Если тело движется по прямой и его скорость возрастает, то направл­ение вектора ускорения совпадает с направлением вектора скорости; при убывании скорости – противоположно направлению вектора скорости.

При движении по криволинейной траектории направление вектора скорости изменяется в процессе движения, вектор ускорения при этом может оказаться направлен под любым углом к вектору скорости.

Равномерное, равноускоренное прямолинейное движение

Движение с постоянной скоростью называется равномерным прямолинейным движением . При равномерном прямолинейном движении тело движется по прямой и за любые равные промежутки времени проходит одинаковые пути.

Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным движением . При таком движении скорость тела изменяется с течением времени.

Равнопеременным называется такое движение, при котором скорость тела за любые равные промежутки времени изменяется на одинаковую величину, т.е. движение с постоянным ускорением.

Равноускоренным называется равнопеременное движение, при котором величина скорости возрастает. Равнозамедленным – равнопеременное движение, при котором величина скорости уменьшается.

При прямолинейном равноускоренном движении тело

  1. двигается вдоль условной прямой линии,
  2. его скорость постепенно увеличивается или уменьшается,
  3. за равные промежутки времени скорость меняется на равную величину.

Например, автомобиль из состояния покоя начинает двигаться по прямой дороге, и до скорости, скажем, в 72 км/ч он двигается равноускоренно. Когда заданная скорость достигнута, то авто движется без изменения скорости, т. е. равномерно. При равноускоренном движении его скорость возрастала от 0 до 72 км/ч. И пусть за каждую секунду движения скорость увеличивалась на 3,6 км/ч. Тогда время равноускоренного движения авто будет равно 20 секундам. Поскольку ускорение в СИ измеряется в метрах на секунду в квадрате, то надо ускорение 3,6 км/ч за секунду перевести в соответствующие единицы измерения. Оно будет равно (3,6 * 1000 м) / (3600 с * 1 с) = 1 м/с 2 .

Допустим, через какое-то время езды с постоянной скоростью автомобиль начал тормозить, чтобы остановиться. Движение при торможении тоже было равноускоренным (за равные промежутки времени скорость уменьшалась на одинаковую величину). В данном случае вектор ускорения будет противоположен вектору скорости. Можно сказать, что ускорение отрицательно.

Итак, если начальная скорость тела нулевая, то его скорость через время в t секунд будет равно произведению ускорения на это время:

При падении тела «работает» ускорение свободного падения, и скорость тела у самой поверхности земли будет определяться по формуле:

Если известна текущая скорость тела и время, которое понадобилось, чтобы развить такую скорость из состояния покоя, то можно определить ускорение (т. е. как быстро менялась скорость), разделив скорость на время:

Однако тело могло начать равноускоренное движение не из состояния покоя, а уже обладая какой-то скоростью (или ему придали начальную скорость). Допустим, вы бросаете камень с башни вертикально вниз с приложением силы. На такое тело действует ускорение свободного падения, равное 9,8 м/с 2 . Однако ваша сила придала камню еще скорости. Таким образом, конечная скорость (в момент касания земли) будет складываться из скорости, развившийся в результате ускорения и начальной скорости. Таким образом, конечная скорость будет находиться по формуле:

Однако, если камень бросали вверх. То начальная его скорость направлена вверх, а ускорение свободного падения вниз. То есть вектора скоростей направлены в противоположные стороны. В этом случае (а также при торможении) произведение ускорения на время надо вычитать из начальной скорости:

Получим из этих формул формулы ускорения. В случае ускорения:

at = v – v 0
a = (v – v 0)/t

В случае торможения:

at = v 0 – v
a = (v 0 – v)/t

В случае, когда тело равноускоренно останавливается, то в момент остановки его скорость равна 0. Тогда формула сокращается до такого вида:

Зная начальную скорость тела и ускорение торможения, определяется время, через которое тело остановится:

Теперь выведем формулы для пути, которое тело проходит при прямолинейном равноускоренном движении . Графиком зависимость скорости от времени при прямолинейном равномерном движении является отрезок, параллельный оси времени (обычно берется ось x). Путь при этом вычисляется как площадь прямоугольника под отрезком. То есть умножением скорости на время (s = vt). При прямолинейном равноускоренном движении графиком является прямая, но не параллельная оси времени. Эта прямая либо возрастает в случае ускорения, либо убывает в случае торможения. Однако путь также определяется как площадь фигуры под графиком.

При прямолинейном равноускоренном движении эта фигура представляет собой трапецию. Ее основаниями являются отрезок на оси y (скорость) и отрезок, соединяющий точку конца графика с ее проекцией на ось x. Боковыми сторонами являются сам график зависимости скорости от времени и его проекция на ось x (ось времени). Проекция на ось x - это не только боковая сторона, но еще и высота трапеции, т. к. перпендикулярна его основаниям.

Как известно, площадь трапеции равна полусумме оснований на высоту. Длина первого основания равна начальной скорости (v 0), длина второго основания равна конечной скорости (v), высота равна времени. Таким образом получаем:

s = ½ * (v 0 + v) * t

Выше была дана формула зависимости конечной скорости от начальной и ускорения (v = v 0 + at). Поэтому в формуле пути мы можем заменить v:

s = ½ * (v 0 + v 0 + at) * t = ½ * (2v 0 + at) * t = ½ * t * 2v 0 + ½ * t * at = v 0 t + 1/2at 2

Итак, пройденный путь определяется по формуле:

s = v 0 t + at 2 /2

(К данной формуле можно прийти, рассматривая не площадь трапеции, а суммируя площади прямоугольника и прямоугольного треугольника, на которые разбивается трапеция.)

Если тело начало двигаться равноускоренно из состояния покоя (v 0 = 0), то формула пути упрощается до s = at 2 /2.

Если вектор ускорения был противоположен скорости, то произведение at 2 /2 надо вычитать. Понятно, что при этом разность v 0 t и at 2 /2 не должна стать отрицательной. Когда она станет равной нулю, тело остановится. Будет найден путь торможения. Выше была приведена формула времени до полной остановки (t = v 0 /a). Если подставить в формулу пути значение t, то путь торможения приводится к такой формуле.

>>Физика: Скорость при равноускоренном движении

Теория равноускоренного движения была разработана знаменитым итальянским ученым Галилео Галилеем. В своей книге "Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к Механике и Местному движению", вышедшей в 1638 г., Галилей впервые дал определение равноускоренного движения и доказал ряд теорем, в которых описывались его закономерности.

Приступая к изучениюравноускоренного прямолинейного движения , выясним сначала, как находится скорость тела, если известны ускорение этого тела и время движения.
При начальной скорости, равной нулю (V 0 = 0),
V = at (3.1)
Эта формула показывает, что для нахождения скорости тела через время I после начала движения надо ускорение тела умножить на время движения.
В противоположном случае, когда тело совершает замедленное движение и в конце концов останавливается (V = 0), формула ускорения позволяет найти начальную скорость тела:
V 0 = at (3.2)

Наглядную картину того, как изменяется скорость тела в процессе равноускоренного движения, можно получить, построив график скорости .

Графики скорости впервые были введены в середине XIV в. францисканским ученым-монахом Джиованни ди Казалисом и архидьяконом Руанского собора Никола Оремом, ставшим впоследствии советником французского короля Карла V. По горизонтальной оси они предложили откладывать время, а по вертикальной оси - скорость. В такой системе координат графики скорости при равноускоренном движении имеют вид прямых линий, наклон которых показывает, как быстро изменяется скорость с течением времени.

Формуле (3.1), описывающей движение с возрастающей скоростью, соответствует, например, график скорости, изображенный на рисунке 5. График, изображенный на рисунке 6, соответствует движению с уменьшающейся скоростью.

При равноускоренном движении скорость тела непрерывно изменяется. Графики скорости позволяют определить скорость тела в различные моменты времени. Но иногда бывает нужно знать не скорость в тот или иной конкретный момент времени (такую скорость называют мгновенной ), а среднюю скорость движения на всем пути.

Задачу о нахождении средней скорости при равноускоренном движении впервые удалось решить Галилею. В своих исследованиях он использовал графический метод описания движения.

Согласно теории Галилея, если скорость тела при равноускоренном движении увеличивается от 0 до некоторого значения V , то средняя скорость движения будет равна половине достигнутой скорости:

Аналогичная формула справедлива и для движения с уменьшающейся скоростью. Если она уменьшается от некоторого начального значения V 0 до 0, то средняя скорость такого движения оказывается равной

Полученные результаты можно проиллюстрировать с помощью графика скорости. Так, например, для нахождения средней скорости движения, которому соответствует график на рисунке 5, мы должны найти половину от 6 м/с. В результате получаем 3 м/с. Это и есть средняя скорость рассматриваемого движения.

1. Кто является автором первой теории равноускоренного движения? 2. Как находится скорость тела при равноускоренном движении из состояния покоя? 3. Используя график, изображенный на рисунке 5, определите скорость тела через 2 с после начала движения. 4. Используя график, изображенный на рисунке 6, определите среднюю скорость движения тела.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Основы физики, онлайн уроки физики, программа с физики, рефераты с физики, учебники по физике, физика в школе, тесты с физики, учебные программы по физике

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки