Домой / Образование / Криволинейная трапеция. Нахождение площади криволинейной трапеции. А теперь рабочая формула

Криволинейная трапеция. Нахождение площади криволинейной трапеции. А теперь рабочая формула

Пример1 . Вычислить площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2


Выполним построение фигуры (см. рис.) Строим прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х, получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2, находим

S = = [-0,25=11,25 кв. ед

Пример 2. Вычислить площадь фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.

Решение. Выполним построение фигуры.

Построим прямую х – 2у + 4 = 0: у = 0, х = - 4, А(-4; 0); х = 0, у = 2, В(0; 2).

Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у = 5, D(0; 5).

Найдем точку пересечения прямых, решив систему уравнений:

х = 2, у = 3; М(2; 3).

Для вычисления искомой площади разобьем треугольник АМС на два треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена прямой, а при изменении х от N до С - прямой


Для треугольника АМN имеем: ; у = 0,5х + 2, т. е. f(x) = 0,5х + 2, a = - 4, b = 2.

Для треугольника NМС имеем: y = - x + 5, т. е. f(x) = - x + 5, a = 2, b = 5.

Вычислив площадь каждого из треугольников и сложив результаты, находим:

кв. ед.

кв. ед.

9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.

Пример 3. Вычислить площадь фигуры, ограниченной линиями: y = x 2 , y = 0, x = 2, x = 3.

В данном случае требуется вычислить площадь криволинейной трапеции, ограниченной параболой y = x 2 , прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь криволинейной трапеции


= = 6кв. ед.

Пример 4. Вычислить площадь фигуры, ограниченной линиями: у = - x 2 + 4 и у = 0

Выполним построение фигуры. Искомая площадь заключена между параболой у = - x 2 + 4 и осью Ох.


Найдем точки пересечения параболы с осью Ох. Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.

Пример 5. Вычислить площадь фигуры, ограниченной линиями: y 2 = x, yx = 1, x = 4

Здесь требуется вычислить площадь криволинейной трапеции, ограниченной верхней ветвью параболыy 2 = x, осью Ох и прямыми x = 1иx = 4 (см. рис.)


По формуле (1), где f(x) = a = 1 и b = 4 имеем = (= кв. ед.

Пример 6 . Вычислить площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .

Искомая площадь ограничена полуволной синусоиды и осью Ох (см. рис.).


Имеем - cosx = - cos = 1 + 1 = 2 кв. ед.

Пример 7. Вычислить площадь фигуры, ограниченной линиями: y = - 6х, у = 0 и х = 4.

Фигура расположена под осью Ох (см. рис.).

Следовательно, её площадь находим по формуле (3)


= =

Пример 8. Вычислить площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам (см. рис.). Таким образом, площадь фигуры находим по формуле (4)

Пример 9 .

х 2 + у 2 = r 2 .

Здесь требуется вычислить площадь, ограниченную окружностью х 2 + у 2 = r 2 , т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую часть этой площади, взяв пределы интегрирования от 0

доr; имеем: 1 = = [

Следовательно, 1 =

Пример 10. Вычислить площадь фигуры, ограниченной линиями: у= х 2 и у = 2х

Данная фигура ограничена параболой у= х 2 и прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим систему уравнений:х 2 – 2х = 0 х = 0 и х = 2


Используя для нахождения площади формулу (5), получим

= и пусть F(x) – некоторая ее первообразная. Тогда число F(b)–F(a) называется интегралом от а до b функции f(x) и обозначается

.

Равенство
называется формулой Ньютона–Лейбница.

Эта формула связывает задачу нахождения площади плоской фигуры с интегралом.

В общем случае, если фигура ограничена графиками функций y=f(x) ; y=g(x) (f(x)>g(x) ) и прямыми x=a ; x=b , то ее площадь равна:

.

Пример2. В какой точке графика функции y=x 2 + 1 надо провести касательную, чтобы она отсекала от фигуры, образованной графиком этой функции и прямыми y= 0, x= 0, x= 1 трапецию наибольшей площади?

Решение. Пусть M 0 (x 0 ,y 0 ) – точка графика функции y=x 2 + 1, в которой проведена искомая касательная.

    Найдем уравнение касательной y=y 0 +f (x 0 )(x–x 0 ) .

Имеем:

Поэтому

.

    Найдем площадь трапеции ОАВС .

.

B – точка пересечения касательной с прямой x= 1 

Задача свелась к нахождению наибольшего значения функции

S (x )=–x 2 +x+ 1 на отрезке . Найдем S (x )=– 2x+ 1. Найдем критическую точку из условия S (x )= 0  x= .

Видим, что функция достигает наибольшего значения при x= . Найдем
.

Ответ: касательную надо провести в точке
.

Отметим, что часто встречается задача нахождения интеграла, исходя из его геометрического смысла. Покажем на примере, как решается такая задача.

Пример 4. Используя геометрический смысл интеграла вычислить

а)
; б)
.

Решение.

а)
– равен площади криволинейной трапеции, ограниченной линиями .

Преобразуем

– верхняя половина окружности с центром Р (1;0) и радиусом R= 1.

Поэтому
.

Ответ:
.

б) Рассуждая аналогично, построим область, ограниченную графиками .2 2x+ 2, касательными к ней в точках A
, B (4;2)

y= –9x– 59, параболой y= 3x 2 +ax+ 1, если известно, что касательная к параболе в точке x=– 2 составляет с осью Ox угол величиной arctg 6.

Найти а , если известно, что площадь криволинейной трапеции, ограниченной линиями y= 3x 3 + 2x, x=a, y= 0, равна единице.

Найти наименьшее значение площади фигуры, ограниченной параболой y=x 2 + 2x– 3 и прямой y=kx+ 1.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.№18, 19,20,21 нечетные

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

В разделе 4.3 уже отмечалось, что определенный интеграл () от

неотрицательной функции численно равен площади криволинейной трапеции, ограниченной графиком функции = (), прямыми = , = и= 0.

Пример 4.24. Вычислить площадь фигуры, заключенной между осью и синусоидой = sin , (рисунок 4.6 ).

sin = − cos 0

= −(cos − cos 0) = 2.

Если фигура не является криволинейной трапецией, то ее площадь стараются представить в виде суммы или разности площадей фигур, являющихся криволинейными трапециями. В частности, справедлива теорема.

Теорема 4.13. Если фигура ограничена снизу и сверху графиками непрерывных функций = 1 (), = 2 () (не обязательно неотрицательных, (рисунок 4.7 ), то ее площадь можно найти по формуле

2 () − 1 () .

Пример 4.25. Вычислить площадь фигуры, ограниченной кривой = 4 и прямыми = и = 4.

y = f2 (x)

y = f1 (x)

Рисунок 4.6

Рисунок 4.7

Решение. Построим

плоскости

(рисунок 4.8 ). Очевидно,

1 () = 4 , 2 () = ,

= ∫

2 − 4 ln

2 = 8 − 4 ln 4 − (2 − 4 ln 2) = 2(3 − 2 ln 2).

Часть I. Теория

Глава 4. Теория интегрирования 4.4. Приложения интеграла. Несобственные интегралы

Рисунок 4.8

4.4.2. Длина дуги кривой

Вычисление длин кривых также приводит к интегралам. Пусть функция= () непрерывна на отрезке [ ; ] и дифференцируема на интервале (;). Ее график представляет некоторую кривую, (; ()), (; ()) (рисунок 4.9 ). Кривую разобьем точками 0 = , 1 , 2 , . . . , = напроизвольных частей. Соединим две соседние точки −1 и хордами,= 1, 2, . . . , . Получим -звенную ломаную, вписанную в кривую. Пусть

есть длина хорды −1 , = 1, 2, . . . , = max16 6 . Длина ломаной будет выражаться формулой

Естественно определить длину кривой как предельное значение длин ломаных, когда → 0, т.е.

Пусть есть абсциссы точек, = 1, 2, . . . ,

< < . . . < = .

Тогда координаты точек есть (; ()), и, пользуясь формулой для расстояния между двумя точками , найдем

C n−1

C k 1C k

Следовательно, есть интегральная сумма для функции √ 1 + (′ ())2 на отрезке [ ; ]. Тогда на основании равенств (4.31) имеем:

= ∫

1 + (′ ())2

Пример 4.26. Найти длину графика = 2

между = 0 и = 3.

Решение. Построим график указанной функции (рисунок 4.10 ).

y = 2

√x 3

Рисунок 4.10

По формуле (4.33) находим:

= ∫ 3

= ∫ 3 √

= ∫ 3 √

1 + (2 1 )2

1 + (′ ())2

(+ 1)2

3 (+ 1)2 0 = 3 (8 − 1) = 3 .

Рассмотрим криволинейную трапецию, ограниченную осью Ох, кривой y=f(x) и двумя прямыми: х=а и х=Ь (рис. 85). Возьмем произвольное значение х (только не а и не Ь). Дадим ему приращение h = dx и рассмотрим полоску, ограниченную прямыми АВ и CD, осью Ох и дугой BD, принадлежащей рассматриваемой кривой. Эту полоску будем называть элементарной полоской. Площадь элементарной полоски отличается от площади прямоугольника ACQB на криволинейный треугольник BQD, а площадь последнего меньше площади прямоугольника BQDM со сторонами BQ = =h=dx} QD=Ay и площадью, равной hAy = Ay dx. С уменьшением стороны h сторона Ду также уменьшается и одновременно с h стремится к нулю. Поэтому площадь BQDM является бесконечно малой второго порядка. Площадь элементарной полоски есть приращение площади, а площадь прямоугольника ACQB, равная АВ-АС==/(х) dx> есть дифференциал площади. Следовательно, саму площадь найдем, интегрируя ее дифференциал. В пределах рассматриваемой фигуры независимое переменное л: меняется от а до b, поэтому искомая площадь 5 будет равна 5= \f(x) dx. (I) Пример 1. Вычислим площадь, ограниченную параболой у - 1 -х*, прямыми X =--Fj-, х = 1 и осью О* (рис. 86). у Рис. 87. Рис. 86. 1 Здесь f(x)= 1 - л?, пределы интегрирования а = - и £=1, поэтому J [*-т]\- -fl -- Г -1-±Л_ 1V1 -l-l-Ii-^ 3) |_ 2 3V 2 / J 3 24 24* Пример 2. Вычислим площадь, ограниченную синусоидой y = sinXy осью Ох и прямой (рис. 87). Применяя формулу (I), получаем Л 2 S= J sinxdx= [-cos x]Q =0 -(-1) = lf Пример 3. Вычислим площадь, ограниченную дугой синусоиды ^у = sin jc, заключенной между двумя соседними точками пересечения с осью Ох (например, между началом координат и точкой с абсциссой я). Заметим, что из геометрических соображений ясно, что эта площадь будет в два раза больше площади предыдущего примера. Однако проделаем вычисления: я 5= | s\nxdx= [ - cosх}* - - cos я-(-cos 0)= 1 + 1 = 2. о Действительно, наше предположение оказалось справедливым. Пример 4. Вычислить площадь, ограниченную синусоидой и ^ осью Ох на одном пе-х риоде (рис. 88). Предварительные рас-рис суждения позволяют предположить, что площадь получится в четыре раза больше, чем в пр. 2. Однако, произведя вычисления, получим «я Г,*я S - \ sin х dx = [ - cos х]0 = = -cos 2л -(-cos 0) = - 1 + 1 = 0. Этот результат требует разъяснений. Для выяснения сути дела вычисляем еще площадь, ограниченную той же синусоидой у = sin л: и осью Ох в пределах от л до 2я. Применяя формулу (I), получаем 2л $2л sin хdx=[ - cosх]л =-cos 2я~}-с05я=- 1-1 =-2. я Таким образом, видим, что эта площадь получилась отрицательной. Сравнивая ее с площадью, вычисленной в пр. 3, получаем, что их абсолютные величины одинаковы, а знаки разные. Если применить свойство V (см. гл. XI, § 4), то получим 2л я 2л J sin xdx= J sin * dx [ sin x dx = 2 + (- 2) = 0То, что получилось в этом примере, не является случайностью. Всегда площадь, расположенная ниже оси Ох, при условии, что независимое переменное изменяется слева направо, получается при вычислении с помощью интегралов отрицательной. В этом курсе мы всегда будем рассматривать площади без знаков. Поэтому ответ в только что разобранном примере будет таким: искомая площадь равна 2 + |-2| = 4. Пример 5. Вычислим площадь ОАВ, указанную на рис. 89. Эта площадь ограничена осью Ох, параболой у = - хг и прямой у - =-х+\. Площадь криволинейной трапеции Искомая площадь ОАВ состоит из двух частей: ОАМ и МАВ. Так как точка А является точкой пересечения параболы и прямой, то ее координаты найдем, решая систему уравнений 3 2 У = тх. (нам нужно найти только абсциссу точки А). Решая систему, находим л; = ~. Поэтому площадь приходится вычислять по частям, сначала пл. ОАМ, а затем пл. МАВ: .... Г 3 2 , 3 Г хП 3 1 / 2 У 2 . QAM-^х }