Домой / Компьютеры и по / Степень с рациональным показателем свойства. Степень с рациональным и действительным показателем. Степень с натуральным показателем, квадрат числа, куб числа

Степень с рациональным показателем свойства. Степень с рациональным и действительным показателем. Степень с натуральным показателем, квадрат числа, куб числа

МБОУ «Сидорская

общеобразовательная школа»

Разработка плана-конспекта открытого урока

по алгебре в 11 классе на тему:

Подготовила и провела

учитель по математике

Исхакова Е.Ф.

План-конспект открытого урока по алгебре в 11 классе.

Тема : «Степень с рациональным показателем».

Тип урока : Изучение нового материала

Цели урока :

    Познакомить учащихся с понятием степени с рациональным показателем и её основными свойствами, на основе ранее изученного материала (степень с целым показателем).

    Развивать вычислительные навыки и умения преобразовывать и сравнивать числа с рациональным показателем степени.

    Воспитывать математическую грамотность и математический интерес у учащихся.

Оборудование : Карточки-задания, презентация ученицы по степени с целым показателем, презентация учителя по степени с рациональным показателем, ноутбук, мультимедийный проектор, экран.

Ход урока:

    Организационный момент.

Проверка усвоения пройденной темы по индивидуальным карточкам-заданиям.

Задание №1.

=2;

Б) =х + 5;

Решите систему иррациональных уравнений: - 3 = -10,

4 - 5 =6.

Задание №2.

Решите иррациональное уравнение: = - 3;

Б) = х - 2;

Решите систему иррациональных уравнений: 2 + = 8,

3 - 2 = - 2.

    Сообщение темы и целей урока.

Тема нашего сегодняшнего урока «Степень с рациональным показателем ».

    Объяснение нового материала на примере изученного ранее.

Вам уже знакомо понятие степени с целым показателем. Кто мне поможет их вспомнить?

Повторение с помощью презентации «Степень с целым показателем ».

Для любых чисел a , b и любых целых чисел m и n справедливы равенства:

a m * a n =a m+n ;

a m: a n =a m-n (a ≠ 0);

(a m) n = a mn ;

(a b) n =a n * b n ;

(a/b) n = a n /b n (b ≠ 0) ;

a 1 =a ; a 0 = 1(a ≠ 0)

Сегодня мы обобщим понятие степени числа и придадим смысл выражениям, имеющим дробный показатель степени. Введём определение степени с рациональным показателем (Презентация «Степень с рациональным показателем»):

Степенью числа а > 0 с рациональным показателем r = , где m – целое число, а n – натуральное ( n > 1), называется число m .

Итак, по определению получаем, что = m .

Давайте попробуем применить это определение при выполнении задания.

ПРИМЕР №1

I Представьте в виде корня из числа выражение:

А) Б) В) .

А теперь давайте попробуем применить это определение наоборот

II Представьте выражение в виде степени с рациональным показателем:

А) 2 Б) В) 5 .

Степень числа 0 определена только для положительных показателей.

0 r = 0 для любого r > 0.

Используя данное определение, дома вы выполните №428 и №429.

Покажем теперь, что при сформулированном выше определении степени с рациональным показателем сохраняются основные свойства степеней, верные для любых показателей.

Для любых рациональных чисел r и s и любых положительных a и b справедливы равенства:

1 0 . a r a s =a r+s ;

ПРИМЕР : *

2 0 . a r: a s =a r-s ;

ПРИМЕР: :

3 0 . (a r ) s =a rs ;

ПРИМЕР: ( -2/3

4 0 . ( ab ) r = a r b r ; 5 0 . ( = .

ПРИМЕР: (25 4) 1/2 ; ( ) 1/2

ПРИМЕР на применение сразу нескольких свойств: * : .

    Физкультминутка.

Положили авторучки на парту, спинки выпрямили, а теперь тянемся вперёд, хотим дотронуться до доски. А теперь подняли и наклоняемся вправо, влево, вперёд, назад. Ручки мне показали, а теперь покажите как умеют танцевать ваши пальчики.

    Работа над материалом

Отметим ещё два свойства степеней с рациональными показателями:

6 0 . Пусть r – рациональное число и 0 < a < b . Тогда

a r < b r при r > 0,

a r < b r при r < 0.

7 0 . Для любых рациональных чисел r и s из неравенства r > s следует, что

a r > а r при а > 1,

a r < а r при 0 < а < 1.

ПРИМЕР: Сравните числа:

И ; 2 300 и 3 200 .

    Итоги урока:

Сегодня на уроке мы вспомнили свойства степени с целым показателем, узнали определение и основные свойства степени с рациональным показателем, рассмотрели применение этого теоретического материала на практике при выполнении упражнений. Хочу обратить ваше внимание на то, что тема «Степень с рациональным показателем» является обязательной в заданиях ЕГЭ. При подготовке домашнего задания (№428 и №429

От целых показателей степени числа a напрашивается переход к рациональным показателем. Ниже мы определим степень с рациональным показателем, причем будем это делать так, чтобы сохранялись все свойства степени с целым показателем. Это необходимо, так как целые числа являются частью рациональных чисел.

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , гдеm – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили корень n-ой степени, то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данныхm , n и a выражение имеет смысл, то степенью числа a с дробным показателемm/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

1. Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

Определение.

Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .



Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

Определение.

Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условиеa≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

2. Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является сократимая обыкновенная дробь, считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

Определение.

Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

o любого действительного числа a , целого положительного m и нечетного натурального n , например, ;

o любого отличного от нуля действительного числа a , целого отрицательного m и нечетного n , к примеру, ;

o любого неотрицательного числа a , целого положительного m и четного n , например, ;

o любого положительного a , целого отрицательного m и четного n , к примеру, ;

o в остальных случаях степень с дробным показателем не определяется, как например не определены степени .a записи мы не придаем никакого смысла, степень числа нуль мы определяем для положительных дробных показателей m/n как , для отрицательных дробных показателей степень числа нуль не определяем.

В заключение этого пункта обратим внимание на то, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, например, . Для вычисления значений выражений подобного вида нужно показатель степени записать в виде обыкновенной дроби, после чего воспользоваться определением степени с дробным показателем. Для указанных примеров имеем и

Степень с рациональным показателем

Хасянова Т.Г.,

преподаватель математики

Представленный материал будет полезен преподавателям математики при изучении темы «Степень с рациональным показателем».

Цель представленного материала: раскрытие моего опыта проведения занятия по теме «Степень с рациональным показателем» рабочей программы дисциплины «Математика».

Методика проведения занятия соответствует его типу - урок изучения и первичного закрепления новых знаний. Была проведена актуализация опорных знаний и умений на базе ранее полученного опыта; первичное запоминание, закрепление и применение новых сведений. Закрепление и применение нового материала проходило в виде решения апробированных мною задач различной сложности, дающие положительный результат усвоения темы.

В начале занятия мною были поставлены перед обучающимися следующие цели: образовательная, развивающая, воспитательная. На занятии мною применялись различные способы деятельности: фронтальная, индивидуальная, парная, самостоятельная, тестовая. Задания были дифференцированы и позволяли выявлять, на каждом этапе урока, степень усвоения знаний. Объем и сложность заданий соответствует возрастным особенностям учащихся. Из моего опыта – домашнее задание, аналогичное задачам, решенным в учебном кабинете, позволяет надежно закрепить полученные знания и умения. В конце урока была проведена рефлексия и оценены работы отдельных обучающихся.

Цели были достигнуты. Обучающиеся изучили понятие и свойства степени с рациональным показателем, научились использовать эти свойства при решении практических задач. За самостоятельную работу оценки объявляются на следующем уроке.

Считаю, что применяемая мною методика проведения занятий по математике может быть применена преподавателями математики.

Тема занятия: Степень с рациональным показателем

Цель урока:

Выявление уровня овладения обучающимися комплексом знаний и умений и на его основе применение определенных решений по совершенствованию учебного процесса.

Задачи урока:

Обучающие: формировать новые знания у обучающихся основных понятий, правил, законов на определение степени с рациональным показателем, умения самостоятельно применять знания в стандартных условиях, в измененных и нестандартных условиях;

развивающие: логически мыслить и реализовывать творческие способности;

воспитывающие: формировать интерес к математике, пополнить лексический запас новыми терминами, получить дополнительную информацию об окружающем мире. Воспитывать терпение, усидчивость, способность преодолевать трудности.

    Организационный момент

    Актуализация опорных знаний

    При умножении степеней с одинаковыми основаниями показатели складываются, а основание остается прежним:

Например,

2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остается прежним:


Например,

3. При возведении степени в степень показатели степеней перемножаются, а основание остается прежним:


Например,

4. Степень произведения равна произведению степеней множителей:

Например,

5. Степень частного равна частному степеней делимого н делителя:


Например,

Упражнения с решениями

Найти значение выражения:

Решение:

В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:

(степень произведения равна произведению степеней множителей);


(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остается прежним, при возведении степени в степень показатели степеней перемножаются, а основание остается прежним).

Тогда получим:

В данном примере были использованы первые четыре свойства степени с натуральным показателем.

Арифметический квадратный корень
- это неотрицательное число, квадрат которого равен a ,
. При
- выражение
не определено, т.к. нет такого действительного числа, квадрат которого равен отрицательному числу a .

Математический диктант (8-10 мин.)

    Вариант

II. Вариант

1.Найти значение выражения

а)

б)

1.Найти значение выражения

а)

б)

2.Вычислить

а)

б)

В)

2.Вычислить

а)

б)

в)

Самопроверка (на отворотной доске):

Матрица ответов:

варианта/задания

Задача 1

Задача 2

Вариант 1

а) 2

б) 2

а) 0,5

б)

в)

Вариант 2

а) 1,5

б)

а)

б)

в) 4

II .Формирование новых знаний

Рассмотрим, какой смысл имеет выражение, где - положительное число – дробное число и m-целое,n-натуральное (n›1)

Определение: степенью числа a›0 с рациональным показателем r = , m -целое, n -натуральное (n ›1)называется число .

Итак:

Например:

Замечания:

1. Для любого положительно a и любого рационального r число положительно.

2. При
рациональная степень числа a не определяется.

Такие выражения как
не имеют смысла.

3.Если дробное положительное число то,
.

Если дробное отрицательное число, то - не имеет смысла.

Например: - не имеет смысла.

Рассмотрим свойства степени с рациональным показателем.

Пусть a >0, в>0; r, s - любые рациональные числа. Тогда степень с любым рациональным показателем обладает следующими свойствами:

1.
2.
3.
4.
5.

III . Закрепление. Формирование новых умений и навыков.

Карточки задания работа в малых группах в форме теста.


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .