Домой / Новости  / Кто и когда открыл солнце. Солнце, описание, интересные факты, характеристики. Солнце - источник жизни на Земле

Кто и когда открыл солнце. Солнце, описание, интересные факты, характеристики. Солнце - источник жизни на Земле

Солнце — это обычная звезда, ее возраст около 5 миллиардов лет. На поверхности Солнца температура равна примерно 5500°С, но в его центре она достигает 14 миллионов градусов. В солнечном ядре происходит превращение водорода в гелий с выделением огромного количества энергии. На поверхности Солнца имеются пятна, происходят яркие вспышки и можно увидеть взрывы колоссальной силы.

Солнца дает Земле тепло и свет, поддерживающие жизнь на нашей планете. Для растений солнечный свет является источником энергии, необходимой для роста. Ископаемое горючее, например уголь, представляет собой разновидность солнечной анергии, отложенной в запас, так как содержащийся углерод был когда-то накоплен растениями.

Для астрономов Солнце — гнезда особая, поскольку оно находится так близко — всего лишь в 150 млн км. Однако чтобы преодолеть такое расстояние на автомобиле, потребовалось бы почти 200 лет, так что и до пашей домашней звезды путь весьма неблизкий. Космический аппарат, летящий по прямой, — и тот провел бы в путешествии до Солнца многие месяцы. Свет, перемещающийся в пространстве быстрее всего остального, преодолевает путь от Солнца до Земли за восемь минут с небольшим. Проксима Кентавра, следующая ближайшая к нам звезда, дальше от нас в четверть миллиона раз.

О Солнце мы знаем гораздо больше, чем о любой другой звезде — просто-напросто потому, что оно находится так близко. В некоторых больших обсерваториях имеются телескопы, специально предназначенные для изучения Солнца. Астрономы хотят знать, какие процессы происходят на Солнце и каким образом оно воздействует па Землю. Это даст нам представление и о большинстве других обычных звезд.

Некоторые ученые полагают, что любое изменение в выработке солнечной энергии неизбежно повлечет за собой изменение климата здесь, на Земле. Следовательно, солнечная астрономия важна как для изучения звезд, так и для предвидения того, каким образом Солнце будет влиять п будущем на среду нашего обитания.

Поверхность

Солнце — это огненный газовый шар, диаметр которого примерно в 109 раз превосходит диаметр Земли. Внутри Солнца могло бы поместиться более миллиона небесных тел размером с Землю. Желтый свет Солнца приходит к нам из слоя солнечной атмосферы, который имеет толщину 500 км и называется фотосферой. Под ним лежат внутренние области Солнца, а выше — прозрачные части наружной атмосферы. Практически вся солнечная энергия, включая тепло и свет, падающие па Землю, приходит к нам от фотосферы, но первоначально производится в глубине Солнца.

Температура фотосферы равна приблизительно 5500°С. Одним из способов вычисления этой температуры является оценка того, насколько горячим должно быть Солнце, чтобы излучать всю ту энергию, которую оно отдает фактически.

Поверхность Солнца — пузырчатая. Эти пузыри, или пена, называются солнечной зернистостью, и разглядеть ее можно только через солнечные телескопы. Эта пузырчатость подобна той, что возникает па закипевшем молоке или мясном соусе. Благодаря конвекции в солнечной атмосфере, тепловая энергия из нижних слоев переносится в фотосферу, придавая ей пенистое строение.

В 1960-х гг. астрономы обнаружили, что верхний слой атмосферы примерно один раз в пять минут поднимается и опускается. Так что Солнце как бы вибрирует, подобно звенящему колоколу. Изучая эти вибрации, астрономы надеются узнать, что представляет собой внутренность солнечного шара.

Солнечная активность

Солнце вращается не как твердое небесное тело вроде Земли. В отличие от Земли различные части Солнца вращаются с разными скоростями. Быстрее всего крутится экватор, делая один оборот за 25 дней. При удалении от экватора скорость вращения снижается, и в полярных областях один оборот занимает уже 35 дней. Различные скорости вращения возможны только потому, что Солнце — это газовый шар. Одно из следствий состоит в закручивании магнитного ноля Солнца, что увеличивает солнечную активность.

Пятна на Солнце — это лишь один пример солнечной активности. «Погодные явления» в солнечной атмосфере совершенно отличны от земных. Магнитные бури и взрывы, называемые вспышками, внезапно вздымаются над поверхностью Солнца. В некотором отношении они напоминают земные грозы, поскольку высвобождают электрическую энергию. Однако па Солнце энергия гигантских электрических разрядов намного превосходит энергию земных молний. Солнечные бури оказывают влияние на Землю, поэтому астрономы держат Солнце под постоянным наблюдением. Солнечные вспышки взметают электрически заряженные частицы в космос, что удивительным образом воздействует на нашу атмосферу.

Полярное сияние

Когда потоки электрически заряженных частиц, порожденных солнечными вспышками, достигают Земли, они создают в нашем небе изумительные «занавеси» мерцающего спета, которые видны в приполярных областях и насыпаются полярными сияниями. Пляшущие всполохи полярных сияний очень красивы, однако мощные взрывы па Солнце таят в себе и некую опасность. В течение нескольких секунд они выбрасывают больше энергии, чем произвели все земные электростанции за все время своего существования. Гигантская солнечная буря 1987 г. обошлась американцам в 100 миллионов долларов, попрели в систему электроснабжения а Северной Америке. Потоки электрически заряженных частиц, летящих от Солнца, выводят из строя электростанции, разрушая их оборудование. Солнечные вспышки опасны и для космонавтов: не следует выхолить н открытый космос, когда они происходят. Частицы, выбрасываемые вспышкой и несущие большую энергию, могут нанести вред организму человека.

Возникновение полярного сияния непредсказуемо и, следовательно, наблюдать его довольно трудно. Оно может иметь форму дуг, лучей и занавесей света в темпом небе, и никогда эти картины не повторяются. Очень важно, чтобы мочь была безлунной; кроме того, полярное сияние гораздо чаще можно увидеть на крайних северных или южных широтах — например, в Шотландии, Новой Шотландии (провинция Канады) и на Аляске — в северном полушарии, либо на Южном острове Новой Зеландии — в южном полушарии.

Солнечный цикл

Количество солнечных пятен, которые можно увидеть, с течением времени меняется. В 1989—1990 гг. их было очень много, поскольку на этот период пришелся пик цикла солнечной активности. В среднем количество солнечных пятен достигает своего максимума каждые 11 лет. В следующий рал плотность пятен будет наибольшей примерно в 2000 или 2001 г. В середине 1990-х гг. солнечных пятен будет относительно немного.

Цикл активности солнечных пятен, но всей видимости, имеет прямое отношение4 к климату па Земле. У некоторых деревьев, например, толщина годовых колец тоже имеет 11-летний цикл. Между 1650 -1715 гг. пятен на Солнце практически не было, солнечный цикл как будто совсем исчез. Это соответствует периоду исключительно холодной погоды в Европе.

Чтобы проверить воздействие 11-летнего солнечного цикла на наш климат, па спутнике был установлен специальный прибор, который измерял количество энергии, произведенной Солнцем за период 1980—1989 гг. Каждый раз, когда на Солнце появлялось большое пятно, количество энергии, излучаемое Солнцем, падало. В 1990-х гг. проводятся новые серии наблюдений с космических кораблей. Ученые надеются, что эти измерения позволят ответить па вопрос, оказывают ли изменения солнечной активности долгосрочное воздействие на Землю — скажем, содействуют ли они глобальному потеплению на пашей планете.

Наружные слои Солнца

Солнечные затмения позволяют увидеть те слои атмосферы Солнца, что лежат над фотосферой. Кольцо розоватого света исходит из хромосферы, температура которой около 15 000"С. Во время полного затмения вокруг Солнца можно видеть слабый белый ореол, солнечную корону. В действительности она простирается на расстояние нескольких радиусов Солнца. Вблизи Солнца ее температура достигает 2 млн градусов. Горячая корона излучает совсем мало света, зато от нее идет очень мощное рентгеновское излучение. Для исследования на околоземных спутниках устанавливают рентгеновские телескопы. При помощи компьютеров строятся цветные изображения областей, которые излучают рентгеновские лучи. Вот почему мы знаем, что светлые участки короны имеют температуру свыше 1 млн градусов. Более холодные участки короны выглядят как черные дыры, сквозь которые частицы, например электроны, могут улетать в космос.

Магнитная оболочка Земли

Магнитное поле Земли отклоняет большую часть солнечного ветра, препятствуя прямой бомбардировке пашей планеты его частицами. Фактически магнитные силы Земли создают невидимую защитную оболочку, которую солнечный ветер обтекает подобно тому, как река обтекает остров. У других планет, имеющих магнитное поле, например у Меркурия и Юпитера, тоже есть невидимые барьеры для солнечного ветра. Если говорить о Земле, то здесь некоторые электрически заряженные частицы все же могут проникнуть сквозь магнитную оболочку.

В глубине Солнца

До XX к. ученые представляли себе Солнце к виде пылающего огненного шара. В 1892 г. в одной книге утверждалось, что Солнце — это мощная ночь из жара и огня. По другой теории, существовавшей и XIX в.. Солнце горит благодаря падающим на него метеоритам. Обе эти идеи неверны. Наши сегодняшние знания позволяют утверждать, что солнечная печь — это огромный ядерный реактор.

Чтобы лучше попять устройство солнечной печи, представь себе для па-чала желтый поверхностный слой, где температура в четыре рала выше точки плавления железа. При такой температуре любое вещество испаряется, так что все Солнце — это огромный шар раскаленного газа.

Как долго будет существовать Солнце?

Каждую секунду Солнце перерабатывает около 600 млн т водорода, производя при этом примерно 4 млн т гелия. Сопоставляя такую скорость с массой Солнца, возникает вопрос: как долго просуществует наше светило?

Совершенно ясно, что Солнце не будет существовать вечно, хотя впереди у него невероятно долгая жизнь. Сейчас оно находится в среднем возрасте. На переработку половины своего водород нот топлива у пето унию 5 млрд лет. В грядущие годы Солнце будет медленно разогреваться и немного увеличиваться в размере. В течение следующих 5 млрд лет его температура и объем будут постепенно подрастать по мере того, как водород будет сгорать. Когда весь водород в центральном ядре израсходуется, Солнце будет в три раза больше, чем теперь. Все океаны на Земле выкипят. Умирающее Солнце поглотит Землю и превратит твердую породу в расплавленную лаву.

В глубине Солнца ядра гелия будут комбинироваться, образуя ядра углерода и более тяжелых веществ. В конечном счете Солнце остынет, превратившись и шар ядерных отходов, так называемый белый карлик.

Думаете, вы знаете все о нашем светиле? Представляем вам, интересные факты о Солнце. Некоторые, вы наверняка уже знаете, а другие будут совершенно неожиданными для вас.

Перечень наиболее интересных фактов

1. Солнце и Солнечная система

Мы живем на планете и думаем, что Земля равноправный член Солнечной системы. Реальность такова, что масса центральной звезды составляет 99,8% от массы Солнечной системы. И большая часть, от оставшихся 0,2% приходит на Юпитер. Таким образом, масса Земли составляет сотые доли массы Солнечной системы.

2. Наша звезда состоит в основном из водорода и гелия

Солнце на 74% состоит из водорода, и на 24% гелия. Оставшиеся 2% включает в себя небольшое количество железа, никеля, кислорода. Иными словами, Солнечная система в основном состоит из водорода.

3. Солнце очень яркое

Мы знаем, что существуют удивительно большие и яркие звезды, например Сириус или Бетельгейзе. Но они находятся невероятно далеко. Наше собственное светило является относительно яркой звездой. Если бы вы могли взять 50 ближайших звезд в радиусе 17 световых лет от Земли, то она будет 4-й по яркости звездой.

4. Солнце является огромным, но в то же время крошечным

Его диаметр в 109 раз больше Земного, внутри него могли бы поместиться 1300 тысяч Земель. Но существуют гораздо большие звезды, чей диаметр почти достиг бы орбиты Сатурна, если бы звезда была помещена внутрь Солнечной системы.

5. Средний возраст 4,5 млрд. лет

Астрономы считают, что наша звезда образовалось около 4590 миллионов лет назад. Примерно через 5 миллиардов лет оно войдет в стадию красного гиганта, и раздуется, затем, сбросив внешние слои, превратится в белый карлик.

6. Солнце имеет слоистую структуру

Хотя наше светило и выглядит как горящий огненный шар, но на самом деле, имеет внутреннюю структуру поделенную на слои. Видимая поверхность, называется фотосфера, она нагрета до температуры около 6000 градусов по Кельвину. Под ней находится зона конвекции, где тепло медленно движется от центра к поверхности, а охлажденное звездное вещество падает вниз. Эта область начинается на расстоянии 70% радиуса. Под зоной конвекции находится радиационный пояс. В этой зоне, тепло передается через излучение. Ядро простирается от центра на расстояние в 0,2 солнечных радиусов. Это место, где температура достигает 13,6 млн градусов Кельвина, и молекулы водорода сливаются в гелий.

7. Солнце может уничтожить все живое на Земле

Солнце на самом деле медленно нагревается. Оно становится на 10% ярче каждый миллиард лет. В течение всего миллиарда лет, жар будет настолько сильным, что жидкая вода не сможет существовать на поверхности Земли. Жизнь на Земле, исчезнет навсегда. Бактерии смогут жить под землей, но поверхность планеты будет выжженной и необитаемой. Через 7 миллиардов лет оно превратится в красного гиганта, и прежде чем оно расширится, Солнце притянет к себе Землю и уничтожает всю планету.

8. Различные ее части вращаются с различной скоростью

В отличие от планет, Солнце это огромная сфера из водорода. Из-за этого, различные части вращаются с разной скоростью. Вы можете видеть, насколько быстро вращается поверхность, путем отслеживания движения пятен по поверхности. Вращение на экваторе занимает 25 дней, в то время как на полюсах, полный оборот может занять 36 дней.

9. Внешняя атмосфера горячее, чем его поверхность

Поверхность имеет температуру 6000 градусов Кельвина. Но это гораздо меньше, чем температура атмосферы звезды. Над поверхностью имеется область атмосферы, — называемая хромосферой, ее температура может достигать 100,000 К. Еще более далекие области, называемые короной, достигают температуры 1 млн. К.

10. Существуют космические аппараты изучающие его прямо сейчас

Самый известный космический корабль, посланный для наблюдений, запущен в декабре 1995 года и называется SOHO. SOHO постоянно наблюдает за нашим светилом. В 2006 году были запущены два аппарата миссии STEREO. Эти два корабля были разработаны, чтобы наблюдать за активностью с двух разных точек зрения, это дает трехмерные модели нашей звезды, и позволяет астрономам более точно прогнозировать космическую погоду.

Солнце — это центр нашей планетной системы, основной ее элемент, без которого не было бы ни Земли, ни жизни на ней. Наблюдением за звездой люди занимаются с древних времен. С тех пор наши знания о светиле значительно расширились, обогатились многочисленными сведениями о движении, внутренней структуре и природе этого космического объекта. Более того, изучение Солнца вносит огромный вклад в понимание устройства Вселенной в целом, особенно тех ее элементов, которые аналогичны по своей сути и принципам «работы».

Зарождение

Солнце — это объект, существующий, по человеческим меркам, очень давно. Его формирование началось примерно 5 миллиардов лет назад. Тогда на месте Солнечной системы находилось обширное молекулярное облако. Под воздействием сил гравитации в нем начали возникать завихрения, подобные земным смерчам. В центре одного из них вещество (в основном это был водород) начало уплотняться, и 4,5 млрд лет назад тут появилась молодая звезда, которая спустя еще продолжительный период времени получила имя Солнце. Вокруг него постепенно стали формироваться планеты — наш уголок Вселенной начал приобретать привычный для современного человека вид.

Желтый карлик

Солнце — это не уникальный объект. Его относят к классу желтых карликов, сравнительно небольших звезд главной последовательности. Срок «службы», отпущенный таким телам, составляет примерно 10 миллиардов лет. По меркам космоса, это совсем немного. Сейчас наше светило, можно сказать, в самом расцвете сил: еще не старое, уже не молодое — впереди еще полжизни.

Желтый карлик — это гигантский шар газа, источником света в котором являются термоядерные реакции, происходящие в ядре. В раскаленном сердце Солнца непрерывно идет процесс преобразования атомов водорода в атомы более тяжелых химических элементов. Пока эти реакции осуществляются, желтый карлик излучает свет и тепло.

Смерть звезды

Когда выгорит весь водород, ему на смену придет другое вещество — гелий. Произойдет это примерно через пять миллиардов лет. Исчерпание водорода знаменует наступление новой стадии в жизни звезды. Она превратится в красного гиганта. Солнце начнет расширяться и займет все пространство вплоть до орбиты нашей планеты. При этом температура его поверхности снизится. Еще примерно через миллиард лет весь гелий в ядре превратится в углерод, и звезда сбросит свои оболочки. На месте Солнечной системы останется и окружающая его Таков жизненный путь всех звезд, подобных нашему светилу.

Внутреннее строение

Масса Солнца огромна. На ее долю приходится примерно 99% от массы всей планетной системы.

Около сорока процентов этого числа сосредоточено в ядре. Оно занимает меньше трети солнечного объема. Диаметр ядра — 350 тысяч километров, этот же показатель для всего светила оценивается в 1,39 млн км.

Температура в солнечной сердцевине достигает 15 млн Кельвинов. Здесь же самый высокий показатель плотности, другие внутренние области Солнца гораздо более разреженные. В таких условиях протекают реакции термоядерного синтеза, обеспечивающие энергией само светило и все его планеты. Ядро окружено зоной лучистого переноса, затем располагается зона конвекции. В этих структурах энергия при помощи двух разных процессов перемещается к поверхности Солнца.

Из ядра в фотосферу

Ядро граничит с зоной лучистой передачи. В ней энергия распространяется дальше через поглощение и излучение веществом квантов света. Это достаточно медленный процесс. Из ядра в фотосферу кванты света попадают за тысячи лет. По мере своего продвижения они двигаются то вперед, то назад, и достигают следующей зоны преобразованными.

Из зоны лучистого переноса энергия попадает в область конвекции. Здесь движение происходит по несколько иным принципам. Солнечное вещество в этой зоне перемешивается подобно кипящей жидкости: более горячие слои поднимаются к поверхности, остывшие же опускаются вглубь. Гамма кванты, образовавшиеся в ядре, в результате серии поглощений и излучений, становятся квантами видимого и инфракрасного света.

За зоной конвекции размещается фотосфера, или видимая поверхность Солнца. Здесь вновь энергия движется посредством лучистого переноса. Достигающие фотосферы горячие потоки из нижележащей области создают характерную гранулярную структуру, хорошо заметную практически на всех снимках светила.

Внешние оболочки

Выше фотосферы располагается хромосфера и корона. Эти слои гораздо менее яркие, поэтому с Земли они доступны для наблюдения только во время полного затмения. Магнитные вспышки на Солнце возникают именно в этих разреженных областях. Они, как и другие проявления активности нашего светила, вызывают большой интерес у ученых.

Причина возникновения вспышек — генерация магнитных полей. Механизм таких процессов требует внимательного изучения в том числе и потому, что солнечная активность приводит к возмущению межпланетной среды, а это оказывает непосредственное влияние на геомагнитные процессы на Земле. Воздействие светила проявляется в изменении численности животных, на него реагируют практически все системы человеческого организма. Активность Солнца сказывается на качестве радиосвязи, уровне грунтовых и поверхностных вод планеты, климатических изменениях. Поэтому изучение процессов, приводящих к ее увеличению или уменьшению, является одной из самых важных задач астрофизики. На сегодняшний день далеко не все вопросы, связанные с солнечной активностью, получили ответы.

Наблюдение с Земли

Солнце оказывает воздействие на все живые существа на планете. Изменение продолжительности светового дня, повышение и понижение температуры непосредственно зависят от положения Земли относительно светила.

Движение Солнца по небосводу подчинено определенным законам. Перемещается светило по эклиптике. Так называется годовой путь, который проходит Солнце. Эклиптика — это проекция плоскости земной орбиты на небесную сферу.

Движение светила нетрудно заметить, если понаблюдать за ним какое-то время. Точка, в которой происходит восход Солнца, перемещается. Это же характерно и для заката. Когда приходит зима, Солнце в полдень расположено гораздо ниже, чем в летнее время.

Эклиптика проходит через зодиакальные созвездия. Наблюдение за их смещением показывает, что ночью нельзя увидеть те небесные рисунки, в которых в данное время располагается светило. Любоваться получается лишь теми созвездиями, где Солнце гостило примерно полгода назад. Эклиптика наклонена к плоскости небесного экватора. Угол между ними составляет 23,5º.

Изменение склонения

На небесной сфере располагается так называемая точка Овна. В ней Солнце меняет свое склонение с южного на северное. Светило достигает этой точки каждый год в день 21 марта. Солнце летом поднимается гораздо выше, чем зимой. С этим связано изменение температурного режима и продолжительности светового дня. Когда приходит зима, Солнце в своем движении отклоняется от небесного экватора к Северному полюсу, а летом — к Южному.

Календарь

Светило располагается точно на линии небесного экватора два раза в год: в дни осеннего и весеннего равноденствия. В астрономии время, которое требуется Солнцу для перемещения из точки Овна и возвращение к ней, называется тропическим годом. Длится он примерно 365,24 дня. Именно продолжительность лежит в основе Он используется сегодня практически везде на Земле.

Солнце — это источник жизни на Земле. Процессы, происходящие в его недрах и на поверхности, оказывает ощутимое влияние на нашу планету. Значение светила было понятно уже в древнем мире. Сегодня мы знаем достаточно много о явлениях, происходящих на Солнце. Природа отдельных процессов благодаря достижениям техники стала понятной.

Солнце — единственная звезда, расположенная достаточно близко для непосредственного изучения. Данные о светиле помогают понять механизмы «работы» других схожих космических объектов. Однако Солнце еще хранит немало тайн. Их только предстоит разведать. Такие явления, как восход Солнца, его перемещение по небу, излучаемое им тепло, когда-то тоже представляли собой загадки. История изучения центрального объекта нашего кусочка Вселенной показывает, что со временем все странности и особенности светила находят свое объяснение.

Исследование Солнца проводилось многими КА которых насчитывается около двух сотен (194), но были и специализированные, это:
Первыми космическими аппаратами, предназначенными для наблюдений Солнца, были созданные NASA спутники серии Пионер с номерами 5-9, запущенные между 1960 и 1968 годами. Эти спутники вращались вокруг Солнца вблизи орбиты Земли и выполнили первые детальные измерения параметров солнечного ветра.
Орбитальная солнечная сбсерватория ("OSO") - серия американских спутников, запущенных в период 1962- 1975гг с целью изучений Солнца, в частности, в ультрафиолетовом и рентгеновском диапазонах волн.
КА "Helios-1" - западногерманская АМС запущена 10.12.1974г, предназначенная для исследования солнечного ветра, межпланетного магнитного поля, космического излучения, зодиакального света, метеорных частиц и радиошумов в околосолнечном пространстве, а также для проведения экспериментов по регистрации явлений, предсказанных общей теорией относительности. 15.01.1976г выведен на орбиту западногерманский КА "Helios-2 ". 17.04.1976г "Helios-2" (Helios )впервые приблизилась к Солнцу на расстояние 0,29 а.е (43,432 млн.км). Зарегистрированы, в частности, магнитные ударные волны в диапазоне 100 - 2200 Гц, а также появление при солнечных вспышках ядер легкого гелия, что указывает на высокоэнергетические термоядерные процессы в хромосфере Солнца. Другое интересное наблюдение, сделанное в рамках этой программы, состоит в том, что пространственная плотность мелких метеоритов вблизи Солнца в пятнадцать раз выше, чем около Земли. Впервые достигнут рекордной скорости в 66,7км/с, двигаясь с 12g.
В 1973 году вступила в строй космическая солнечная обсерватория (Apollo Telescope Mount) на космической станции Skylab . С помощью этой обсерватории были сделаны первые наблюдения солнечной переходной области и ультрафиолетового излучения солнечной короны в динамическом режиме. С её помощью были также открыты «корональные извержения массы» и корональные дыры, которые, как сейчас известно, тесно связаны с солнечным ветром.
Спутник по изучению максимума солнечной активности ("SMM") - Американский спутник (Solar Maximum Mission - SMM), запущенный 14.02.1980г для наблюдений ультрафиолетового, рентгеновского и гамма-излучений от солнечных вспышек в период высокой солнечной активности. Однако всего через несколько месяцев после запуска из-за неисправности электроники зонд перешёл в пассивный режим. В 1984 году космическая экспедиция STS-41C на шаттле Челленджер устранила неисправность зонда и снова запустила его на орбиту. После этого, до своего входа в атмосферу в июне 1989 года, аппарат получил тысячи снимков солнечной короны. Его измерения помогли также выяснить, что мощность полного излучения Солнца за полтора года наблюдений изменилась только на 0,01 %.в период максимума солнечной активности.
Японский космический аппарат Yohkoh (Ёко , «Солнечный свет»), запущенный в 1991 году, проводил наблюдения излучения Солнца в рентгеновском диапазоне. Полученные им данные помогли учёным идентифицировать несколько разных типов солнечных вспышек и показали, что корона даже вдали от областей максимальной активности намного более динамична, чем принято было считать. Yohkoh функционировал в течение полного солнечного цикла и перешёл в пассивный режим во время солнечного затмения 2001 года, когда он потерял свою ориентировку на Солнце. В 2005 году спутник вошёл в атмосферу и был разрушен.
Солнечный зонд "Ulysses " - европейская автоматическая станция запущена 6 октября 1990г для измерения параметров солнечного ветра, магнитного поля вне плоскости эклиптики, изучения полярных областей гелиосферы. Провел сканирование экваториальной плоскости Солнца вплоть до орбиты Земли. Впервые зарегистрировал в радиоволновом диапазоне спиральную форму магнитного поля Солнца, расходящуюся веером. Установил, что напряженность магнитного поля Солнца возрастает со временем и за последние 100 лет увеличилась в 2,3 раза. Это единственный КА, движущийся перпендикулярно плоскости эклиптики по гелиоцентрической орбите. Пролетел в середине 1995г над южным полюсом Солнца при его минимальной активности, а 27.11.2000г пролетел во второй раз, достигнув максимальной широты в южном полушарии -80,1 град. 17.04.1998 АС " Ulysses" завершила свой первый виток вокруг Солнца. 7 февраля 2007г зонд Ulysses "преодолел" важную веху в ходе своей миссии - в третий раз за время полета он прошел над 80-м градусом южной широты на поверхности Солнца. Этот проход по траектории над полярной областью нашего светила начался в ноябре 2006 года и стал третьим за шестнадцатилетнюю историю эксплуатации зонда. Раз в 6,2 года он совершает виток вокруг нашего светила и в ходе каждого оборота проходит над полярными областями Солнца. В ходе пролёта учёные получили много новой научной информации. В ходе таких облётов сначала спутник огибает южный полюс Солнца, а затем - северный. Ulysses подтвердил существование быстрого солнечного ветра от солнечных полюсов примерно 750 км/с, что меньше, чем ожидалось.
Спутник для изучения солнечного ветра "Wind " -
американский научно-исследовательский аппарат, запущен 1 ноября 1994 года на орбиту с параметрами: наклонение орбиты - 28,76º; Т=20673,75 мин.; П=187 км.; А=486099 км. 19.08.2000г совершил 32-й пролет близь Луны. Используя космический аппарат WIND, исследователи смогли сделать редкие прямые наблюдения магнитного перезамыкания, которое позволяет магнитному полю Солнца, проводимому солнечным ветром, связываться с магнитным полем Земли, пропуская при этом плазму и энергию от Солнца в земное пространство, что вызывает полярные сияния и магнитные бури.
Солнечная и гелиосферная обсерватория ("SOHO ") -
Научно-исследовательский спутник (Solar and Heliospheric Observatory - SOHO), запущенный Европейским космическим агентством 2 декабря 1995г с предполагаемым сроком работы около двух лет. Он был выведен на орбиту вокруг Солнца в одной из точек Лагранжа (L1), где уравновешиваются гравитационные силы Земли и Солнца. Двенадцать инструментов на борту спутника предназначены для исследования солнечной атмосферы (в частности ее нагревания), солнечных колебаний, процессов выноса солнечного вещества в пространство, структуры Солнца, а также процессов в его недрах. Ведет постоянное фотографирование Солнца. 04.02.2000г своеобразный юбилей отметила солнечная обсерватория "SOHO". На одной из фотографий, сделанных "SOHO" обнаружена новая комета, ставшую 100-й в послужном списке обсерватории, а в июне 2003г открыла уже 500-ю комету. 15 января 2005 года была открыта уже 900-я хвостатая странница. А юбилейную, 1000-ю открыл 5 августа 2005г. 25 июня 2008 года с помощью полученных солнечной обсерваторией SOHO данных была открыта «юбилейная», 1500-я комета.
Постоянные наблюдения с помощью обсерватории SOHO показали, что супергранулы движутся через солнечную поверхность быстрее, чем вращается Солнце. В январе 2003 года группе ученых, которой руководит Лоран Жизон из Стенфордского университета, удалось объяснить это загадочное явление. Супергрануляция - это картина активности, которая волной перемещается по солнечной поверхности. Это явление можно сравнить с «движением волны» на трибунах стадиона, когда каждый из сидящих друг за другом болельщиков встает со своего места на короткое время, а затем садится, но не двигается ни вправо, ни влево, при этом для наблюдателя со стороны создается иллюзия бегущей по трибуне волны. Аналогичные волны создаются поднимающимися и опускающимися супергранулами. Волны распространяются по всем направлениям через солнечную поверхность, но по каким-то причинам они сильнее (имеют большую амплитуду) в направлении солнечного вращения. Так как эти волны наиболее выделяются, то и создается иллюзия, что они движутся быстрее скорости вращения Солнца. Достаточно трудно сделать предположение о физической причине этого явления, но, вероятно, само вращение является источником волн супергрануляции.
Видеофильмы, сделанные на основе новых наблюдений, переданных аппаратом TRACE, позволили астрономам увидеть яркие вкрапления плазмы, пробегающие по корональным петлям вверх и вниз. Данные, полученные с SOHO, подтвердили, что эти вкрапления двигаются с огромной скоростью, и позволили сделать вывод, что корональные петли - это не статические структуры, наполненные плазмой, а, скорее, ее сверхскоростные потоки, которые «выстреливаются» с солнечной поверхности и «разбрызгиваются» между структурами в короне.
Спутник для изучения короны Солнца "TRACE (Transition Region & Coronal Explorer)" запущен 2.04.1998г на орбиту с параметрами: орбиты - 97,8 градуса; Т=96,8 минуты; П=602 км.; А=652 км.
Задача - исследовать область перехода между короной и фотосферой с помощью 30-см ультрафиолетового телескопа. Исследование петель показало, что они состоят из ряда связанных друг с другом отдельных петель. Петли газа нагреваются и поднимаются вдоль линий магнитного поля на высоту до 480000 км, затем охлаждаясь падают назад со скоростью более 100 км/с.
31 июля 2001г запущен российско-украинская обсерватория «Коронас-Ф » для наблюдения солнечной активности и исследование солнечно-земных связей. Спутник находится на околоземной орбите с высотой около 500 км и наклонением 83 град. Его научный комплекс включает 15 приборов, которые наблюдают Солнце во всем диапазоне электромагнитного спектра - от оптики до гамма.
За время наблюдения приборы КОРОНАС-Ф зарегистрировали самые мощные вспышки на Солнце и их воздействие на околоземное космическое пространство, получено огромное количество рентгеновских солнечных спектров и изображений Солнца, новые данные о потоках солнечных космических лучей и ультрафиолетового излучения Солнца. /подробнее новости от 17.09.2004г/.
Спутник "Genesis " для изучения солнечного ветра запущен 8 августа 2001 года. Выйдя в точке либрации L1 американский исследовательский зонд 3 декабря 2001 года начал сбор солнечного ветра. Всего же Genesis собрал от 10 до 20 мкг элементов солнечного ветра - а это вес нескольких крупинок соли, - представляющих интерес для ученых. Но аппарат Genesis 08.09.2004 приземлился очень жестко (разбился при скорости 300 км/час) в пустыне Юта (не открылись парашюты). Однако ученым удалось извлечь из обломков остатки солнечного ветра для изучения.
22 сентября 2006 года на орбиту Земли была выведена солнечная обсерватория HINODE (Solar-B, Hinode ). Обсерватория создана в японском институте ISAS, где разрабатывалась обсерватория Yohkoh (Solar-A) и оснащена тремя инструментами: SOT — солнечный оптический телескоп, XRT — рентгеновский телескоп и EIS — изображающий спектрометр ультрафиолетового диапазона. Основной задачей HINODE является исследование активных процессов в солнечной короне и установление их связи со структурой и динамикой магнитного поля Солнца.
В октябре 2006 года была запущена солнечная обсерватория STEREO . Она состоит из двух идентичных космических аппаратов на таких орбитах, что один из них постепенно отстанет от Земли, а другой обгонит её. Это позволит с их помощью получать стереоизображения Солнца и таких солнечных явлений, как корональные извержения массы.

Рассказ про Солнце для детей сообщит как объяснить ребенку что такое Солнце и какое его значение в нашей жизни.

Краткое сообщение о Солнце

Солнце - самая важная для людей звезда, которая обеспечивает и поддерживает жизнь на планете Земля. Вокруг него вращаются все планеты, их спутники, а также кометы и метеориты. Оно в миллион раз больше Земли. Среднее расстояние от Земли до Солнца – 149,6 млн. км. Световой луч доходит до Земли за 8 минут.

Светило Солнечной системы невероятно горячее. На его поверхности температура 6000°С, а в центре – более 15 млн. градусов.

Звезда по имени Солнце, сформировавшаяся из громадного облака водорода и звездной пыли, горит уже в течение 4,6 миллиарда лет. Она обладает достаточным запасом топлива, чтобы гореть ещё очень долго.

Именно благодаря ему мы живем, питаемся плодами земли (овощами, фруктами, ягодами), разводим скот, да и вообще, наслаждаемся жизнью. Почему?
Во-первых, солнце – это свет. Без света растения бы не смогли выделять кислород в атмосферу. А ведь мы дышим только благодаря кислороду! Без света у человека появилась бы нехватка витамина D, который необходим для крепости наших костей. Кости стали бы хрупкими и ломкими. Мы бы ломались на каждом шагу.
Во-вторых, солнце – это тепло. Без тепла наша земля превратилась бы в огромный шар льда. Естественно, все живое при такой низкой температуре исчезло бы с лица земли.