Домой / Среднее образование  / Энтропия растет. Правило уменьшения энтропии - Вадим Карелин — LiveJournal. Почему наша жизнь так необыкновенна

Энтропия растет. Правило уменьшения энтропии - Вадим Карелин — LiveJournal. Почему наша жизнь так необыкновенна

Энтропия (от др.-греч. ἐντροπία «поворот», «превращение») – широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы, определяющая меру необратимого рассеивания энергии. В статистической физике энтропия характеризует вероятность осуществления какого-либо макроскопического состояния. Кроме физики, термин широко употребляется в математике: теории информации и математической статистике.

В науку это понятие вошло ещё в XIX веке. Изначально оно было применимо к теории тепловых машин, но достаточно быстро появилось и в остальных областях физики, особенно, в теории излучения. Очень скоро энтропия стала применяться в космологии, биологии, в теории информации. Различные области знаний выделяют разные виды меры хаоса:

  • информационная;
  • термодинамическая;
  • дифференциальная;
  • культурная и др.

Например, для молекулярных систем существует энтропия Больцмана, определяющая меру их хаотичности и однородности. Больцман сумел установить взаимосвязь между мерой хаоса и вероятностью состояния. Для термодинамики данное понятие считается мерой необратимого рассеяния энергии. Это функция состояния термодинамической системы. В обособленной системе энтропия растёт до максимальных значений, и они в итоге становятся состоянием равновесия. Энтропия информационная подразумевает некоторую меру неопределённости или непредсказуемости.

Энтропия может интерпретироваться как мера неопределённости (неупорядоченности) некоторой системы, например, какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации. Таким образом, другой интерпретацией энтропии является информационная ёмкость системы. С данной интерпретацией связан тот факт, что создатель понятия энтропии в теории информации (Клод Шеннон) сначала хотел назвать эту величину информацией.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса), где – подведенная теплота, – температура, и – состояния, и – энтропия, соответствующая этим состояниям (здесь рассматривается процесс перехода из состояния в состояние).

Для необратимых процессов выполняется неравенство, вытекающее из так называемого неравенства Клаузиуса, где – подведенная теплота, – температура, и – состояния, и – энтропия, соответствующая этим состояниям.

Поэтому энтропия адиабатически изолированной (нет подвода или отвода тепла) системы при необратимых процессах может только возрастать.

Используя понятие энтропии Клаузиус (1876) дал наиболее общую формулировку 2-го начала термодинамики: при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимального значения в состоянии равновесия (2-ое начало термодинамики не является абсолютным, оно нарушается при флуктуациях).

Абсолютная энтропия (S) вещества или процесса – это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре. Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах. У энтропии такая же данная температура, как и данная энтальпия определенного вещества.

Подводим итог: энтропия увеличивается, следовательно, любыми своими действиями мы увеличиваем хаос.

Просто о сложном

Энтропия – мера беспорядка (и характеристика состояния). Визуально, чем более равномерно расположены вещи в некотором пространстве, тем больше энтропия. Если сахар лежит в стакане чая в виде кусочка, энтропия этого состояния мала, если растворился и распределился по всем объёму – велика. Беспорядок можно измерить, например, посчитав сколькими способами можно разложить предметы в заданном пространстве (энтропия тогда пропорциональна логарифму числа раскладок). Если все носки сложены предельно компактно одной стопкой на полке в шкафу, число вариантов раскладки мало и сводится только к числу перестановок носков в стопке. Если носки могут находиться в произвольном месте в комнате, то существует немыслимое число способов разложить их, и эти раскладки не повторяются в течение нашей жизни, как и формы снежинок. Энтропия состояния «носки разбросаны» – огромна.

Второй закон термодинамики гласит, что самопроизвольно в замкнутой системе энтропия не может убывать (обычно она возрастает). Под её влиянием рассеивается дым, растворяется сахар, рассыпаются со временем камни и носки. Эта тенденция объясняется просто: вещи движутся (перемещаются нами или силами природы) обычно под влиянием случайных импульсов, не имеющих общей цели. Если импульсы случайны, всё будет двигаться от порядка к беспорядку, потому что способов достижения беспорядка всегда больше. Представьте себе шахматную доску: король может выйти из угла тремя способами, все возможные для него пути ведут из угла, а прийти обратно в угол с каждой соседней клетки – только одним способом, причём этот ход будет только одним из 5 или из 8 возможных ходов. Если лишить его цели и позволить двигаться случайно, он в конце концов с равной вероятностью сможет оказаться в любом месте шахматной доски, энтропия станет выше.

В газе или жидкости роль такой разупорядочивающей силы играет тепловое движение, в вашей комнате – ваши сиюминутные желания пойти туда, сюда, поваляться, поработать, итд. Каковы эти желания – неважно, главное, что они не связаны с уборкой и не связаны друг с другом. Чтобы снизить энтропию, нужно подвергнуть систему внешнему воздействию и совершить над ней работу. Например, согласно второму закону, энтропия в комнате будет непрерывно возрастать, пока не зайдёт мама и не попросит вас слегка прибрать. Необходимость совершить работу означает также, что любая система будет сопротивляться уменьшению энтропии и наведению порядка. Во Вселенной та же история – энтропия как начала возрастать с Большого Взрыва, так и будет расти, пока не придёт Мама.

Мера хаоса во Вселенной

Для Вселенной не может быть применён классический вариант вычисления энтропии, потому что в ней активны гравитационные силы, а вещество само по себе не может образовать замкнутую систему. Фактически, для Вселенной – это мера хаоса.

Главнейшим и крупнейшим источником неупорядоченности, которая наблюдается в нашем мире, считаются всем известные массивные образования – чёрные дыры, массивные и сверхмассивные.

Попытки точно рассчитать значение меры хаоса пока нельзя назвать удачными, хотя они происходят постоянно. Но все оценки энтропии Вселенной имеют значительный разброс в полученных значениях – от одного до трёх порядков. Это объясняется не только недостатком знаний. Ощущается недостаточность сведений о влиянии на расчёты не только всех известных небесных объектов, но и тёмной энергии. Изучение её свойств и особенностей пока в зачатке, а влияние может быть определяющим. Мера хаоса Вселенной всё время изменяется. Учёные постоянно проводят определённые исследования, чтобы получить возможность определения общих закономерностей. Тогда будет можно делать достаточно верные прогнозы существования различных космических объектов.

Тепловая смерть Вселенной

У любой замкнутой термодинамической системы есть конечное состояние. Вселенная тоже не является исключением. Когда прекратится направленный обмен всех видов энергий, они переродятся в тепловую энергию. Система перейдёт в состояние тепловой смерти, если термодинамическая энтропия получит наивысшие значение. Вывод о таком конце нашего мира сформулировал Р. Клаузиус в 1865 году. Он взял за основу второй закон термодинамики. Согласно этому закону, система, которая не обменивается энергиями с другими системами, будет искать равновесное состояние. А оно вполне может иметь параметры, характерные для тепловой смерти Вселенной. Но Клаузиус не учитывал влияния гравитации. То есть, для Вселенной, в отличие от системы идеального газа, где частицы распределены в каком-то объёме равномерно, однородность частиц не может соответствовать самому большому значению энтропии. И всё-таки, до конца не ясно, энтропия - допустимая мера хаоса или смерть Вселенной?

Энтропия в нашей жизни

В пику второму началу термодинамики, по положениям которого всё должно развиваться от сложного к простому, развитие земной эволюции продвигается в обратном направлении. Эта нестыковка обусловлена термодинамикой процессов, которые носят необратимый характер. Потребление живым организмом, если его представить как открытую термодинамическую систему, происходит в меньших объёмах, нежели выбрасывается из неё.

Пищевые вещества обладают меньшей энтропией, нежели произведённые из них продукты выделения. То есть, организм жив, потому что может выбросить эту меру хаоса, которая в нём вырабатывается в силу протекания необратимых процессов. К примеру, путём испарения из организма выводится около 170 г воды, т.е. тело человека компенсирует понижение энтропии некоторыми химическими и физическими процессами.

Энтропия – это некая мера свободного состояния системы. Она тем полнее, чем меньшие ограничения эта система имеет, но при условии, что степеней свободы у неё много. Получается, что нулевое значение меры хаоса – это полная информация, а максимальное – абсолютное незнание.

Вся наша жизнь – сплошная энтропия, потому что мера хаоса иногда превышает меру здравого смысла. Возможно, не так далеко время, когда мы придём ко второму началу термодинамики, ведь иногда кажется, что развитие некоторых людей, да и целых государств, уже пошло вспять, то есть, от сложного к примитивному.

Выводы

Энтропия – обозначение функции состояния физической системы, увеличение которой осуществляется за счёт реверсивной (обратимой) подачи тепла в систему;

величина внутренней энергии, которая не может быть преобразована в механическую работу;

точное определение энтропии производится посредством математических расчётов, при помощи которых устанавливается для каждой системы соответствующий параметр состояния (термодинамическое свойство) связанной энергии. Наиболее отчётливо энтропия проявляется в термодинамических процессах, где различают процессы, обратимые и необратимые, причём в первом случае энтропия остаётся неизменной, а во втором постоянно растёт, и это увеличение осуществляется за счёт уменьшения механической энергии.

Следовательно, все то множество необратимых процессов, которые происходят в природе, сопровождается уменьшением механической энергии, что в конечном итоге должно привести к остановке, к «тепловой смерти». Но этого не может произойти, поскольку с точки зрения космологии невозможно до конца завершить эмпирическое познание всей «целостности Вселенной», на основе которого наше представление об энтропии могло бы найти обоснованное применение. Христианские теологи полагают, что, основываясь на энтропии, можно сделать вывод о конечности мира и использовать её для доказательства «существования Бога». В кибернетике слово «энтропия» используется в смысле, отличном от его прямого значения, который лишь формально можно вывести из классического понятия; оно означает: среднюю наполненность информацией; ненадёжность в отношении ценности «ожидания» информации.

Сегодня мы вернемся к термодинамике. Попробуем понять, почему хаос так важен и может ли он объяснить загадку, как работает время. Обычно мы говорим о космологии, теории относительности, квантовой механике, физике частиц и другом, но что плохого в том, чтобы на миг нырнуть в 19 век в объятья старомодной термодинамики? Термодинамика не так уж плоха: она помогла осуществить промышленную революцию и в конечном итоге будет ответственна за смерть вселенной. Она заслуживает вашего уважения.

Вопрос будет следующим:

«Допустим, энтропия - это мера беспорядка объектов. Но что в ней такого важного, что она должна быть законом?».

Если вы посмотрите почти на все законы физики, время будет течь почти с опозданием. Сделайте фильм из столкновения двух электронов, а потом запустите фильм в обратном порядке, и вторая версия будет выглядеть так же нормально и физически достоверно, как и первый вариант. На микроскопическом уровне время кажется практически симметричным. Потому что, на этом уровне не работает привычная нам термодинамика.

На макроскопическом уровне все совершенно иначе. Вы не помните будущее, например, не можете склеить яйцо или разделить коктейль на составляющие. И говоря о возможности путешествий во времени, мы подразумеваем только одну стрелу времени, один вектор, одно направление: вперед.

Есть один общий знаменатель, отличающий будущее от прошлого: все запутывается. Вы знаете это как «второй закон термодинамики». Или не знаете. Мне все равно.

Второй закон гласит, буквально, что все разваливается, или что вещи становятся все более и более хаотичными и беспорядочными со временем, но это не совсем так. Правильно так: полная энтропия замкнутой системы возрастает со временем. Энтропия является мерой числа способов, которыми вы можете переворачивать вещи с ног на голову и сохранять все макроскопические величины неизменными.

Весьма школьный пример


На примере все станет понятным. Допустим, у вас было три молекулы воздуха и вы поместили их в левой части коробки. Это очень аккуратный способ организовать вещи. Позвольте природе сделать свое дело - и молекулы разлетятся в разные стороны, и каждая из них проведет половину своего времени в правой части коробки, и другую половину - в левой части.

В любой момент времени вы будете видеть случайный снимок трех молекул. Есть восемь разных путей организовать молекулы, но только два из них (ЛЛЛ, ППП) разместят все три молекулы в одной части контейнера. Это всего лишь 25 % вероятности. В остальное время атомы, скорее всего, будут распределены равномерно. И равномерное распределение - это более высокое состояние энтропии, чем концентрированное.

Вы можете играть в эту же игру, набрав полную ладонь монет и подбрасывая их в воздух. Орел и решка - это правая и левая часть коробки, и наоборот. Проделайте этот жест несколько раз и увидите, что молекулы почти всегда равномерно распределяются.

Большие числа превращают вероятность в закон

Если вы увеличите число молекул воздуха, к примеру, до 10 26 или выше, вероятность подсказывает, что случайные движения в итоге распределят молекулы «равномерно». Благодаря квантовой механике, случайность становится принципиальной составляющей всего этого. То есть, поскольку есть техническая вероятность того, что все молекулы воздуха внезапно покинут вашу спальню, пока вы спите, за несколько минут, это явно не то, чего стоит бояться ночью.

Растущая энтропия - на самом деле закон, поскольку во Вселенной так много частиц, что вероятность того, что все они спонтанно выстроятся в состояние низкой энтропии, ошеломляюще мала. Этот же тип случайно работает в отношении азартных игр и прогнозирования погоды.

Ну или еще пример. Вам выпадает решка два раза подряд, и вы совсем не удивляетесь этому. Но если кому-то решка выпадает сто раз кряду, это становится подозрительным. Чтобы оценить масштаб такого события, представьте себе: если вы будете подбрасывать монетку 10 раз в секунду, у вас уйдет времени в триллион раз больше нынешнего возраста вселенной, прежде чем вы дождетесь результата. Грубо говоря, в определенный момент система становится настолько большой, что шанс на то, что энтропия будет уменьшаться, не просто мал, но крайне близок к нулю. Поэтому мы называем это «вторым законом».

Креационисты среди вас могут использовать это как доказательство, что сложные вещи (вроде людей или динозавров) никогда не смогли бы сформироваться. В конце концов, вы ведь высоко упорядоченный человек, стоит полагать. Если вы облако газа, примите мои извинения. Но если предположить, что вы человек, нет ничего странного в том, что вы существуете как маленький шанс высокого порядка.

Суть правила в том, что энтропия растет во всей вселенной. Например, если вы сделаете хорошенький холодильник, полный холодного воздуха, вы сделаете это за счет высокой энтропии горячего воздуха. Вот почему кондиционер нуждается в выхлопе, а обогреватель - нет. По этой же причине вы не можете построить вечный двигатель. Часть энергии всегда будет преобразовываться в тепло.

Энтропия непрерывно увеличивается со временем. Вы сидите в горячей ванне в прохладной комнате, чувствуете себя тепло и уютно, но потом события начинают принимать угрожающий поворот: вода в номере по температуре приближается к воздуху, вам становится холодно, вас атакуют мурашки.

То же самое касается будущего Вселенной. С течением времени тепло равномерно распределится во Вселенной. Звезды выгорят, черные дыры испарятся, станет темно и холодно. Бум.

Время и второй закон


Физики постоянно спорят на тему того, работает ли второй закон термодинамики наоборот. Другими словами, определяется ли течение времени увеличением энтропии во Вселенной? Шон Кэрролл написал очень интересную книгу на эту тему. лихо связывал «психологическое время», способ нашего запоминания вещей, с «энтропийным временем». Другими словами, если поток энтропии обратить вспять, время будет течь в обратном направлении.

Одной из причин, почему вообще эти идеи набирают обороты, является загадка наблюдателя. Юная вселенная, судя по всему, находилась в состоянии высокого порядка, но нет никаких фундаментальных причин, почему это должно быть так. Вселенная, созданная , должна была бы находиться в состоянии полного хаоса, но вместо этого она была невероятно упорядоченной. Гравитационная система высокой энтропии свернулась в комки (произведя звезды, галактики и черные дыры), но вселенная была гладкой. Почему?

Другие заходят еще дальше. Эрик Верлинде, например, утверждает, что такие явления, как гравитация, вытекают из второго закона термодинамики (и теории струн). Стоит отметить, что интересных идей много. Многие говорят, что время заставляет энтропию расти, но не энтропия порождает время. Для кого-то энтропия это просто то, что происходит.

Или должно произойти с высокой вероятностью.

Экология познания. Как вы думаете, для чего мы едим? Стандартный и при этом совсем неточный, и даже, скорее, неправильный ответ: мы получаем энергию. А какой же правильный? Сейчас расскажу. Но начнём с энтропии.

Как вы думаете, для чего мы едим? Стандартный и при этом совсем неточный, и даже, скорее, неправильный ответ: мы получаем энергию. А какой же правильный? Сейчас расскажу. Но начнём с энтропии.

Энтропия - понятие очень сложное и многогранное. Эдакая бяка-закаляка, которая пронизывает всё вокруг и нас самих. И если попытаться определить, что же это такое, то это мера беспорядка, мера хаоса. А рождается энтропия из совершенно, казалось бы, безобидного бытового фактика: ничем холодным нельзя нагреть более тёплое. Наоборот, что-то горячее будет нагревать это холодное, причем до того момента, пока между этими двумя предметами не наступит тепловое равновесие. Только что отваренное горячее яйцо, как известно, довольно быстро остынет, если поместить его в холодную воду, но эту воду оно при этом нагреет. И то и другое станет теплым. Яйцо можно комфортно поедать, а воду можно вылить, если не найдете ей какого-то иного применения: но рано или поздно она всё равно остынет, сравнявшись с температурой воздуха в вашей кухне. Всё вышеописанное в физике называется вторым началом термодинамики. Оно, это второе начало, не следует ни из чего. Оно не является следствием каких-то великих теорий и не вытекает из изощренных теорем. Это просто наблюдаемый факт. Мы постулируем, что это так, потому что никто никогда в нашем мире не видел, чтобы холодное еще больше нагрело горячее.


А энтропия - следствие этого факта. Максимальная энтропия (хаос) в системе (яйцо, холодная вода и воздух на вашей кухне) возникнет, когда система придет в термодинамическое равновесие, то есть температура яйца, воды и окружающего их воздуха сравняется. Если вы не съедите яйцо еще тёплым, конечно. Казалось бы, когда всё уравновешивается, тут-то и наступает полный порядок. Ан нет. Всё наоборот. И связано это с внутренним микросостоянием системы, ее молекулярным уровнем.

Представьте себе все те мириады молекул, которые образуют воздух на вашей кухне. Они совершенно беспорядочно, хаотично носятся по всему ее объему, сталкиваясь и непрестанно меняя направление. Причем чем выше температура (стоит летний зной, а кондиционер вы так и не поставили), тем быстрее и, следовательно, хаотичней эти молекулы носятся вокруг вас. Отсюда первый вывод: чем выше температура системы, тем выше мера ее хаоса, то есть энтропии. Но взглянем на тот же самый воздух на вашей кухне с другой стороны. Сколь ни покажется странным, но именно благодаря хаотичности и случайности передвижений молекул воздуха они не концентрируются в каком-то одном углу, а достаточно равномерно распределяются по всему ее объёму. Если бы воздух вел себя иначе, нам пришлось бы бегать за ним, пытаясь перед каждым вдохом определить, в какой же угол он на сей раз забился. Но, слава богу, молекулы воздуха в норме ведут себя самым предсказуемым, наиболее вероятным, образом: как и всякий газ, воздух займет весь тот объём, который ему будет предложен. Кухню - так кухню, весь воздушный бассейн Земли - так весь воздушный бассейн (в космос, как вы понимаете, он не улетает из-за гравитации).


Это вам не какой-нибудь высокоэнтропийный воздух вашей кухни. Это низкоэнтропийный воздух, «загнанный» в баночку. А вы-то думали, почему так дорого…

И наоборот. Если нам вздумается загнать-таки воздух в какой-либо один угол нашей кухни, нам потребуется уйма изобретательности, сил и энергии, чтобы это проделать. Очевидно, нам понадобится какая-то герметичная перегородка, достаточно мощный насос, какая-то энергетическая установка для подпитки этого насоса и т. д. Иными словами, чтобы заставить воздух вести себя неким организованным образом, нам потребуется проделать большую работу. Только так мы заставим его нарушить наиболее вероятное своё поведение и собраться в понравившемся нам углу. И при этом мы уменьшим меру его беспорядка: энтропия системы уменьшится. Отсюда следует: чем менее вероятный характер приобретет микросостояние системы, тем ниже энтропия этой системы, то есть мера ее беспорядка. И наоборот. А так как термодинамическое равновесие - это наиболее вероятное состояние любой замкнутой системы, то оно, это состояние, и будет самым высокоэнтропийным.

Кому-то этот мой рассказ может показаться чем-то отвлеченным, не слишком существенным: какое нам дело до микросостояний каких-то там систем, даже если это касается яйца, которое мы собираемся съесть на завтрак. Вряд ли тот факт, что яйцо придет в термодинамическое равновесие с холодной водой, которой мы его залили специально, чтобы немножко охладить, испортит нам аппетит. А воздух, слава богу, ведет себя самым подобающим, наиболее вероятным для себя и ожидаемым нами образом. Но к сожалению, это не отвлеченные разговоры. Энтропия - это то, что всё в этом мире и сам этот мир направляет к смерти.


Существует закон неубывания энтропии. На самом деле, мы можем смело говорить, что это закон постоянного возрастания энтропии.Неубывание касается систем, достигших своего термодинамического равновесия, то есть своего максимума энтропии. Во всех остальных случаях речь идет исключительно о возрастании энтропии. Что случится с нашими яйцом, водой и воздухом на кухне (боюсь, они вам порядочно уже надоели, но вскоре мы их оставим в покое), когда они достигнут своего температурного равновесия? Если мы будем их считать замкнутой системой, то есть изолируем от внешнего мира, то эта система придет, в конце концов, в полный покой, там прекратятся какие бы то ни было процессы. Это будет покой смерти, вечный покой. Исключением, правда, будут различные квантовые эффекты, связанные с принципом неопределенности, но тут мы их оставим за скобками, чтобы не запутаться. Именно из-за энтропии невозможно создание вечного двигателя, потому что эволюция любой замкнутой системы должна закончиться полным покоем.


Наша Вселенная - это, скорее всего, замкнутая система. По крайней мере, так считает большинство ученых: нет никаких научных свидетельств того, чтобы в нее поступало что-либо извне. Всякая замкнутая система стремится к термодинамическому равновесию. То, что энтропия нашей Вселенной непрерывно растет - факт, не вызывающий сомнений. Когда физики оценили энтропию фонового излучения, которое осталось от Большого взрыва и которое пронизывает всю Вселенную, они были, по их собственным словам, просто ошарашены (сн: Роджер Пенроуз. Новый ум короля). И до относительно недавнего времени наиболее вероятным сценарием гибели Вселенной считалась так называемая тепловая смерть, то есть Вселенная должна была, как казалось тогда, завершить свой путь, достигнув термодинамического равновесия при температуре близкой к абсолютному нулю. Попросту говоря - замерзнуть.

Но когда была проведена оценка энтропии черных дыр, стало очевидным, что она, а следовательно, энтропия всей Вселенной, на много порядков больше, чем можно было себе вообразить. Точкой равновесия нашей Вселенной как системы должно быть равновесие сверхмассивной черной дыры. Нет ни одного научно обоснованного оптимистического сценария эволюции нашего мира: гибель его неизбежна.


Мир, который мы видим вокруг себя, обречен, потому что базируется на принципе постоянного стремления к самоуничтожению: максимуму беспорядка и энергетическому минимуму. Всякое поле старается сбросить лишнюю энергию, образовав квант; всякий возбужденный электрон при любом удобном случае отдает лишний фотон, чтобы спуститься на более низкий энергетический уровень; всякий камень при первой возможности готов скатиться с горы, чтобы избавиться от лишней потенциальной энергии.

С точки зрения современного научного знания, совершенно противоестественным для нашего мира выглядит само рождение Вселенной, образование звезд и планет (вообще, вещества), зарождение жизни, формирование сознания. Все эти феномены, совершенно очевидно, противоположны мэйнстриму эволюции мира. Безусловно, локально, в отдельно взятых уголочках Вселенной возможно преобладание негэнтропии (этот термин обозначает отрицательную энтропию, то есть меру противоположного процесса - уменьшение беспорядка; несколько позже мы увидим, что практически всегда негэнтропия тождественна такому понятию, как информация). Но за это приходится расплачиваться ростом энтропии вокруг таких исключительных уголков.

Так зачем же мы едим? Для того чтобы получать необходимую человеку энергию, достаточно летнего солнышка или печки-буржуйки в холод. А для многих из нас и этого не надо: вспомним, масса пропорциональна энергии. Вы давно взвешивались? Всякий человек отдает в окружающее пространство примерно столько же тепловой энергии, сколько получает извне. А если бы получал больше, чем отдавал, он постоянно бы увеличивался в размерах (что со многими из нас и происходит). Но вспомните, сколько энергии(!) наш организм тратит на то, чтобы избавиться от лишней тепловой (высокоэнтропийной) энергии в зной: усиленная работа потовых желез, расширенные сосуды, учащенные дыхание и сердцебиение…

На самом деле с едой в первую очередь мы получаем негэнтропию. Человек - существо очень высокоорганизованное, то есть, извините за выражение, существо низкоэнтропийное. Чтобы поддерживать это своё состояние, ему необходим источник этой самой низкой энтропии. Таким источником для нас служат растения, научившиеся фотосинтезу и способные создавать органические (сложные и маловероятные, а следовательно, низкоэнтропийные) вещества под воздействием солнечного света. Видимый спектр света - относительно низкоэнтропийная форма излучения. Именно его используют растения (и некоторые микроорганизмы), чтобы разделять атмосферный углекислый газ на кислород и углерод и затем формировать свою сложную органическую структуру. При этом в окружающее пространство они излучают тепло, оно же высокоэнтропийное, инфракрасное излучение.

Мы едим растения напрямую, а также косвенно, употребляя в пищу мясо, рыбу и другие продукты животного происхождения (понятно, что те, кого едим мы, поедали до недавнего времени растения или тех, кто поедал растения). И тем самым получаем сложные органические соединения, из которых уже дальше строим самих себя и в том числе свою сложную (низкоэнтропийную) энергетическую систему. А во вне выделяем опять-таки тепло и относительно высокоэнтропийный углекислый газ при дыхании. Если бы животные, включая человека, сами были бы способны к фотосинтезу, то пища им при комфортной температуре внешней среды, пожалуй, не требовалась вовсе. Разве что минеральные удобрения. Ну и вода, конечно. Не знаю, как вас, меня такая гипотетическая возможность почему-то не очень радует: то ли слишком люблю поесть, то ли высокомерно отношусь к растениям и не хочу на них походить. И то и другое, наверное, не очень хорошо. Но очевидно одно: разделение труда целесообразно не только в человеческом обществе, но и в живой природе в целом.


Вот и пообедали…

Благодаря такой локальной неоднородности в нашем уголке Вселенной, каким является лучащееся Солнце, на нашем небосводе мы имеем бесплатный источник низкоэнтропийного, упорядоченного излучения. А потому возможно существование жизни на нашей планете. Но, получая солнечный свет, мы, Земля и все ее обитатели вместе взятые, в качестве «благодарности» переадресуем в холодный космос, прежде всего, высокоэнтропийное, хаотическое тепловое излучение. Таким образом, энтропия всей системы, нашей Вселенной, растет. Да что там космос. Я даже боюсь заикаться о том невероятном количестве энтропии, которую люди, существа, как считается, разумные, производят вокруг себя: в среде собственного обитания. Платой за продукты всех наших высоких (и не слишком высоких) технологий, а эти продукты также очень высокоорганизованная (организованная нами) форма материи, является то самое загрязнение окружающей среды, которое уже стало прямой угрозой существования самому человечеству.

Энтропия подчинила себе не только вещество и энергию. Она подчинила себе и само время. Все фундаментальные уравнения физики, которыми описывается наш мир, симметричны во времени. То есть будущее и прошлое, с точки зрения физики, абсолютно равноправны. И в классической механике, и в квантовой, и в волновых уравнениях Максвелла, и в теории относительности, везде (есть одно исключение, которое относится к ядерной физике, так называемому слабому взаимодействию, но что следует из этого исключения, сами ядерщики пока не понимают). Уравнения - они потому и уравнения, что левая часть равна правой. Иными словами, время не должно было бы иметь никакого направления: что из прошлого в будущее, что из будущего в прошлое - всё равно. Если бы не энтропия!


Классический пример, который используют физики, чтобы показать непосвященным, как же у времени появляется направление или, как его еще называют, стрела времени. Чашка чая на столе. Вот она стоит. Её случайно задели, она падает, вокруг осколки, чай растекается по полу. Картинка всеми нами виденная и не раз. Но никто никогда не видел обратного, если не считать перемотки видео или киноплёнки назад: чтобы осколки собрались снова в целую чашку, в неё забрался чай, и чашка легко запрыгнула на стол. Но с точки зрения физики, энергия, полученная чашкой при падении и столкновении с полом, будет в точности равна энергии необходимой для того, чтобы всем осколкам и чаю собраться вместе и запрыгнуть назад на стол. Закон сохранения энергии и здесь срабатывает в полном объёме. Так что же мешает это сделать? Другой закон, вытекающий из второго начала термодинамики: закон неубывания энтропии.

Дело тут в том, что энергия, полученная чашкой при падении, в основном перешла в тепло. Атомы осколков и чая после удара о пол (который тоже немножко нагрелся) стали двигаться чуточку быстрее, хаотичней. То есть энтропия системы повысилась. И чтобы вернуть их в прежнее, более организованное состояние, потребуется невероятно точная обратная настройка этих атомов, которая, скорее всего, просто невозможна. Не говоря уже о том, что часть образовавшегося тепла тут же рассеется в окружающем пространстве. Конечно, если помнить законы квантовой механики, можно всё же надеяться, что из всех миллиардов, миллиардов, миллиардов чашек, стаканов, бокалов, рюмок, тарелок, плошек, пиал и т. д., упавших со столов за всю историю человечества, хотя бы одна (или один) собралась сама собой и всё же запрыгнула на прежнее место. Но скажите честно, вы поверите свидетелям такого происшествия? В лучшем случае решите, что эти свидетели предварительно выпили слишком много содержимого своих чашек, стаканов, бокалов и рюмок, и что в них был вовсе не чай. Хотя законы физики не запрещают подобных событий. Но они, эти события, очень редки, а потому мы относим их в лучшем случае к чудесам, а в худшем - к галлюцинациям.


Мы не видим пожаренных яичниц, собирающихся назад в свежие яйца, каминной золы, снова превращающейся в поленья, кусочков сахара, выпрыгивающих из горячего кофе прямо в руку тому, кто их туда положил. Время для нас течет только в одну сторону. А направление ему задает энтропия, и только она. И направление это, как мы выяснили выше, довольно мрачное: к разрушению и смерти. Обычно, чуточку повзрослев, мы начинаем это замечать и по себе, и оглядываясь вокруг. Но напрасно мы говорим, что время неумолимо. Неумолима, на самом деле, энтропия.

И тут я хотел бы вернуться к понятию сингулярности, о чем мы говорили в предыдущей статье. Мы относительно подробно рассмотрели, какими будут конечные сингулярности (или конечная сингулярность) этого мира. Эта сингулярность черной дыры - самой высокоэнтропийной системы, которая человечеству известна. Но эта же картина говорит о том, что наш мир в самом начале должен был быть очень упорядоченным. Начальная сингулярность, породившая Большой взрыв, должна была быть необычайно низкоэнтропийной, потому что в наблюдаемом нами мире энтропия непрерывно растет, значит, когда-то она была низкой или равной нулю. Космология сегодняшнего дня - это пространство нераскрытых тайн и неразгаданных загадок. Но тайна начального состояния мира, пожалуй, самая большая.

Роджер Пенроуз оценочно посчитал величину энтропии для конечного коллапса нашей Вселенной: 1010123! Отсюда через представление о фазовом объёме (фазовое пространство – это множество всех состояний системы в конкретный момент времени. В фазовом пространстве состояние системы описывается координатами одной точки, а вся эволюция системы - перемещением этой точки) Пенроуз делает вывод о вероятности возникновения мира, в котором бы соблюдалось второе начало термодинамики в том виде, который мы знаем.

Эта величина свидетельствует о том, насколько точным должен был быть замысел Творца: точность составляла примерно одну 1010123–ую! Это поразительная точность. Подобную цифру нельзя даже полностью выписать в обычной десятичной системе исчисления: она представляла бы собой 1 с последующими 10¹²³ нулями! Даже если бы мы были в состоянии записать «0» на каждом протоне и каждом нейтроне во вселенной, а также использовали для этой цели все остальные частицы, наше число, тем не менее, осталось бы недописанным. (Р. Пенроуз. Новый ум короля)

Замечу, что вероятности ниже 1/1050 математики считают нулевыми и не учитывают при расчетах, а это число, записанное в десятичной системе, легко вмещается в одну строку стандартного листа писчей бумаги.

Приведённое Пенроузом немыслимое число (так и хочется сделать его именем собственным и писать с большой буквы - Число), по его словам, очень приблизительная, наименьшая точность, которая потребовалась для организации Большого взрыва, породившего наблюдаемый нами мир. В то же время конечная сингулярность Вселенной, примером которой для нас служит сингулярность черных дыр, как мы говорили выше, должна быть совершенно хаотична. Материальный мир идёт к смерти. Но создан он был для жизни! И об этом я надеюсь рассказать в дальнейшем. опубликовано

Когда я учился на первом курсе МВТУ им. Баумана, на занятиях по химии нам рассказали об энтропии . Это было потрясение! Впервые в жизни в естественнонаучной величине я увидел не столько научный, сколько философский и даже этический смысл.

Энтропия - это мера упорядоченности системы. Саму ее нельзя измерить, можно оценить лишь ее увеличение или уменьшение. Например, карандаши в коробке имеют меньшую энтропию, чем карандаши, разбросанные по столу. Кусок мела имеет меньшую энтропию, чем тот же кусок, растолченный в пыль. Книга с текстом имеет меньшую энтропию, чем то же количество чистой бумаги. Собранный кубик Рубика имеет меньшую энтропию, чем разобранный.

Самое интересное в энтропии то (не буду придерживаться строгой физичности для простоты объяснения сути), что в нашем мире она постоянно растет. Вселенная расширяется, рассеивает свое тепло, этот процесс необратим, он ведет к увелечению энтропии и, в пределе, - к тепловой смерти Вселенной. Если все будет продолжаться так, как идет сейчас, этот мир когда-то будет полностью уничтожен. Вот. Грустно.

Но этому процессу можно кое-что противопоставить. Когда растет дерево, оно организует материю и уменьшает энтропию. Когда человек пишет книгу, он уменьшает энтропию. Когда много людей строят город или живут по закону, они уменьшают энтропию. Любая организующая деятельность уменьшает энтропию и, как следствие, противостоит разрушению мира. Я бы сказал больше: сознательная организующая, созидательная деятельность уменьшает энтропию. Хорошо организованное мышление уменьшает энтропию. Таким образом, у нас есть, что противопоставить тепловой смерти Вселенной. Я говорю об этом вполне серьезно, понимая, что мы не единственные существа в этом мире, способные мыслить и сознательно созидать.

Когда я это понял, я стал придерживаться правила уменьшения энтропии . Этого правила нет в физике или химии, оно имеет чисто этическую природу. Суть его в том, что в результате твоей деятельности энтропия должна уменьшаться. Или, другими словами, ты не должен увеличивать энтропию мира, в котором живешь. Это простое правило имеет следующие аспекты:
- давать миру больше, чем брать у него
- оставлять после себя больший порядок, чем был до тебя
- никогда не держать ум пустым, праздным (пустой ум увеличивает энтропию)
- стараться доводить до конца начатые проекты
- стараться как можно меньше требовать от других, но больше - от себя
- не иметь долгов любого плана
- стараться устранять любой беспорядок, с которым сталкиваешься
- и т. п. - продолжать можно долго

Сразу скажу, что мне самому далеко не всегда удается следовать этому правилу. Но я стараюсь.

Представьте, что вы взяли коробку с пазлом и высыпали все кусочки мозаики на стол. В теории кусочки могут упасть на свои места так, что картинка сразу сложится целиком. Но в жизни так никогда не бывает. Почему?

Потому что шансы на это ничтожно малы, ведь каждый кусочек пазла должен упасть только одним определённым образом, чтобы картина сложилась. С точки зрения математики, вероятность, что это произойдёт случайно, минимальна.

Что такое энтропия

jamesclear.com

Энтропия - это мера неупорядоченности. И она всегда увеличивается со временем. Всё естественным образом стремится к беспорядку. Здания разрушаются. Машины ржавеют. Люди стареют. Даже горы постепенно рассыпаются.

Это правило, известное как второе начало термодинамики , - один из фундаментальных законов нашей Вселенной. Оно гласит, что в изолированной системе энтропия остаётся неизменной или увеличивается (но никогда не уменьшается).

Но не стоит впадать в панику, есть и хорошие новости. Мы можем сопротивляться силам энтропии. Мы можем собрать рассыпавшийся пазл. Прополоть заросший сад. Убраться в захламлённой комнате. Организовать разрозненных людей в сплочённую команду.

Так как Вселенная стремится к беспорядку, нам приходится затрачивать энергию, чтобы создать в своей жизни стабильность и упорядоченность.

Чтобы , нужны забота и внимание. Чтобы дом был в хорошем состоянии, его нужно ремонтировать и содержать в чистоте. Для успеха команды необходимы общение и сотрудничество. Если не прилагать усилий, всё будет стремиться к распаду.

Этот вывод - что беспорядок со временем всегда увеличивается, и мы можем противостоять этому, затрачивая энергию, - открывает главную цель жизни. Мы должны прилагать усилия, чтобы создавать порядок, который сможет устоять перед неумолимым напором энтропии.

Как энтропия проявляется в нашей жизни

С помощью энтропии можно объяснить многие непонятные и удивительные факты, например:

Почему наша жизнь так необыкновенна

Представьте человеческий организм. Атомы, из которых состоит тело, могли бы сложиться практически в бесконечное количество вариантов и не создать никакой формы жизни. C точки зрения математики, вероятность нашего существования очень мала. И всё-таки мы существуем.

Во Вселенной, где всем заправляет энтропия, наличие жизни с такой чёткой устойчивой организацией поразительно.

Почему нам нравятся искусство и красота

С помощью энтропии можно объяснить, почему искусство и красота кажутся нам такими эстетически привлекательными. Художник создаёт особую форму порядка и симметрии, какую Вселенная, скорее всего, никогда не породила бы самостоятельно. Число красивых комбинаций гораздо меньше общего количества всех комбинаций. Красота - редкость во Вселенной, полной беспорядка. Поэтому симметричное лицо редко и красиво, ведь несимметричных вариантов несравнимо больше.

Почему идеальные для себя условия нужно не найти, а создать

У каждого из нас свои таланты, навыки и интересы. Но общество и культура, в которых мы живём, не создавались специально под нас. Помня об энтропии, подумайте, каковы шансы, что условия, в которых вы выросли, идеальны для раскрытия ваших талантов?

Крайне маловероятно, что жизнь создаст для вас ситуацию, идеально подходящую под ваши способности. Скорее всего, вы окажетесь в положении, не совсем соответствующем вашим навыкам и потребностям.

Мы обычно описываем такое состояние, как «не в своей тарелке», «не в своей стихии». Естественно, в таких условиях гораздо сложнее , принести пользу, победить. Зная это, мы должны сами создавать для себя идеальные условия жизни.

Сложности в жизни возникают не потому, что планеты так выстроились, и не потому, что какие-то высшие силы сговорились против вас. Это просто действует закон энтропии. Состояний беспорядка гораздо больше, чем упорядоченных. Учитывая всё это, удивительно не то, что в жизни есть проблемы, а то, что мы можем их разрешать.