Домой / Квартира и дача / Равенства выражающие законы арифметических действий. Законы арифметических действий. Умножение на нуль

Равенства выражающие законы арифметических действий. Законы арифметических действий. Умножение на нуль

В ходе исторического развития, конечно, долго складывали и умножали, не отдавая себе отчета в тех законах, которым подчиняются эти операции. Лишь в 20-х и 30-х годах предыдущего столетия главным образом французские и английские математики выяснили основные свойства этих операций. Кто хочет ознакомиться с историей этого вопроса подробнее, тому я могу рекомендовать здесь, как буду это делать неоднократно ниже, большую «Энциклопедию математических наук».

Возвращаясь к нашей теме, я имею в виду теперь действительно перечислить те пять основных законов, к которым приводится сложение:

1) всегда представляет собою число, иначе говоря, действие сложения всегда без всяких исключений выполнимо (в противоположность вычитанию, которое в области положительных чисел выполнимо не всегда);

2) сумма всегда определена однозначно;

3) имеет место сочетательный, или ассоциативный закон: , так что скобки можно и вовсе опустить;

4) имеет место переместительный, или коммутативный закон:

5) имеет место закон монотонности: если , то .

Эти свойства понятны без дальнейших пояснений, если мы имеем перед глазами наглядное представление о числе как о количестве. Но они должны быть выражены строго формально, чтобы на них можно было опираться при дальнейшем строго логическом развитии теории.

Что касается умножения, то здесь действует, прежде всего, пять законов, аналогичных только что перечисленным:

1) всегда есть число;

2) произведение однозначно,

3) закон сочетательности:

4) закон переместительности:

5) закон монотонности: если , то

Наконец, связь сложения с умножением устанавливается шестым законом:

6) закон распределительности, или дистрибутивности:

Легко уяснить, что все вычисления опираются исключительно на эти 11 законов. Я ограничусь простым примером, скажем, умножением числа 7 на 12;

согласно закону распределительности

В этом коротком рассуждении вы, конечно, узнаете отдельные шаги, которые мы производим при вычислениях в десятичной системе. Предоставляю вам самим разобрать примеры посложнее. Мы здесь выскажем только сводный результат: наши цифровые вычисления заключаются в повторном применении перечисленных выше одиннадцати основных положений, а также в применении заученных наизусть результатов действий над однозначными числами (таблица сложения и таблица умножения).

Однако, где же находят себе применение законы монотонности? В обыкновенных, формальных вычислениях мы на Них действительно не опираемся, но они оказываются необходимыми в задачах несколько иного рода. Напомню вам здесь о способе, который в десятичном счете называют оценкой величины произведения и частного. Это прием величайшей практической важности, который, к сожалению, в школе и среди студентов известен далеко еще не достаточно, хотя при случае о нем говорят уже во втором классе; я здесь ограничусь только примером. Допустим, нам нужно умножить 567 на 134, причем в этих числах цифры единиц установлены, - скажем, посредством физических измерений - лишь весьма неточно. В таком случае было бы совершенно бесполезно вычислять произведение с полною точностью, так как такое вычисление все равно не гарантирует нам точного значения интересующего нас числа. Но что нам действительно важно - это знать порядок величины произведения, т. е. определить, в пределах какого числа десятков или сотен число заключается. Но эту, оценку закон монотонности действительно дает вам непосредственно, ибо из него вытекает, что искомое число содержится между 560-130 и 570-140. Дальнейшее развитие этих соображений я опять-таки предоставляю вам самим.

Во всяком случае, вы видите, что при «оценочных вычислениях» приходится постоянно пользоваться законами монотонности.

Что касается действительного применения всех этих вещей в школьном преподавании, то о систематическом изложении всех этих основных законов сложения и умножения не может быть и речи. Учитель может остановиться только на законах сочетательном, переместительном и распределительном, и то только при переходе к буквенным вычислениям, эвристически выводя их из простых и ясных численных примеров.


Тема № 1.

Действительные числа.Числовые выражения. Преобразование числовых выражений

I. Теоретический материал

Основные понятия

· Натуральные числа

· Десятичная запись числа

· Противоположные числа

· Целые числа

· Обыкновенная дробь

· Рациональные числа

· Бесконечная десятичная дробь

· Период числа, периодическая дробь

· Иррациональные числа

· Действительные числа

· Арифметические действия

· Числовое выражение

· Значение выражения

· Обращение десятичной дроби в обыкновенную

· Обращение обыкновенной дроби в десятичную

· Обращение периодической дроби в обыкновенную

· Законы арифметических действий

· Признаки делимости

Числа, употребляемые при счете предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называются натуральными . Любое натуральное число можно записать с помощью десяти цифр : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую запись чисел называют десятичной.

Например : 24; 3711; 40125.

Множество натуральных чисел принято обозначать N .

Два числа, отличающиеся друг от друга только знаком, называются противоположными числами.

Например , числа 7 и – 7.

Числа натуральные, им противоположные, а также число нуль составляют множество целых Z .

Например : – 37; 0; 2541.

Число вида , где m – целое число, n – натуральное число, называется обыкновенной дробью . Заметим, что любое натуральное число можно представить в виде дроби со знаменателем 1.

Например : , .

Объединение множеств целых и дробных чисел (положительных и отрицательных) составляет множество рациональных чисел. Его принято обозначать Q .

Например : ; – 17,55; .

Пусть дана десятичная дробь. Ее значение не изменится, если справа приписать любое число нулей.

Например : 3,47 = 3,470 = 3,4700 = 3,47000… .

Такая десятичная дробь называется бесконечной десятичной дробью.

Любую обыкновенную дробь можно представить в виде бесконечной десятичной дроби.

Последовательно повторяющаяся группа цифр после запятой в записи числа называется периодом , а бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической . Для краткости принято период записывать один раз, заключая его в круглые скобки.



Например : 0,2142857142857142857… = 0,2(142857).

2,73000… = 2,73(0).

Бесконечные десятичные непериодические дроби называются иррациональными числами.

Объединение множеств рациональных и иррациональных чисел составляет множество действительных чисел. Его принято обозначать R .

Например : ; 0,(23); 41,3574…

Число является иррациональным.

Для всех чисел определены действия трёх ступеней:

· действия I ступени: сложение и вычитание;

· действия II ступени: умножение и деление;

· действия III ступени: возведение в степень и извлечение корня.

Выражение, составленное из чисел, знаков арифметических действий и скобок, называется числовым.

Например : ; .

Число, полученное в результате выполнения действий, называется значением выражения .

Числовое выражение не имеет смысла , если содержит деление на нуль.

При нахождении значения выражения выполняются последовательно действия III ступени, II ступени и в конце действия I ступени. При этом необходимо учитывать размещение в числовом выражении скобок.

Преобразование числового выражения заключается в последовательном выполнении арифметических действий над входящими в него числами с использованием соответствующих правил (правило сложения обыкновенных дробей с разными знаменателями, умножения десятичных дробей и др.). Задания на преобразование числовых выражений в учебных пособиях встречаются в следующих формулировках: «Найдите значение числового выражения», «Упростите числовое выражение», «Вычислите» и др.

При нахождении значений некоторых числовых выражений приходится выполнять действия с дробями разного вида: обыкновенными, десятичными, периодическими. В этом случае бывает необходимо обратить обыкновенную дробь в десятичную или выполнить обратное действие – заменить периодическую дробь обыкновенной.

Чтобы обратить десятичную дробь в обыкновенную , достаточно в числителе дроби записать число, стоящее после запятой, а в знаменателе – единицу с нулями, причем нулей должно быть столько, сколько цифр находится справа от запятой.

Например : ; .

Чтобы обратить обыкновенную дробь в десятичную , надо разделить ее числитель на знаменатель по правилу деления десятичной дроби на целое число.

Например : ;

;

.

Чтобы обратить периодическую дробь в обыкновенную , надо:

1) из числа, стоящего до второго периода, вычесть число, стоящее до первого периода;

2) записать эту разность числителем;

3) в знаменателе написать цифру 9 столько раз, сколько цифр в периоде;

4) дописать в знаменателе столько нулей, сколько цифр между запятой и первым периодом.

Например : ; .

Законы арифметических действий над действительными числами

1. Переместительный (коммутативный) закон сложения: от перестановки слагаемых значение суммы не меняется:

2. Переместительный (коммутативный) закон умножения: от перестановки множителей значение произведения не меняется:

3. Сочетательный (ассоциативный) закон сложения: значение суммы не изменится, если какую-либо группу слагаемых заменить их суммой:

4. Сочетательный (ассоциативный) закон умножения: значение произведения не изменится, если какую-либо группу множителей заменить их произведением:

.

5. Распределительный (дистрибутивный) закон умножения относительно сложения: чтобы умножить сумму на число, достаточно умножить каждое слагаемое на это число и сложить полученные произведения:

Свойства 6 – 10 называют законами поглощения 0 и 1.

Признаки делимости

Свойства, позволяющие в некоторых случаях, не производя деление, определить, делится ли одно число на другое, называются признаками делимости .

Признак делимости на 2. Число делится на 2 тогда и только тогда, когда запись числа оканчивается на четную цифру. То есть на 0, 2, 4, 6, 8.

Например : 12834; –2538; 39,42.

Признак делимости на 3 . Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например : 2742; –17940.

Признак делимости на 4 . Число, содержащее не менее трех цифр, делится на 4 тогда и только тогда, когда делится на 4 двузначное число, образованное последними двумя цифрами заданного числа.

Например : 15436; –372516.

Признак делимости на 5 . Число делится на 5 тогда и только тогда, когда его последняя цифра либо 0, либо 5.

Например : 754570; –4125.

Признак делимости на 9 . Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например : 846; –76455.

В дальнейшем, когда будем изучать действия над числами, изображёнными цифрами или буквами (безразлично), нам придётся во многих выводах опираться на те законы действий, которые изучались в арифметике. В силу важности этих законов они называются основными законами действий.

Напомним их.

1. Переместительный закон сложения.

Сумма не изменяется от перемены порядка слагаемых.

Этот закон уже был записан в § 1 в виде равенства:

где а и - любые числа.

Из арифметики известно, что переместительный закон верен для суммы любого числа слагаемых.

2. Сочетательный закон сложения.

Сумма нескольких слагаемых не изменится, если какую-нибудь группу рядом стоящих слагаемых заменить их суммой.

Для суммы трёх слагаемых имеем:

Например, сумму можно вычислить двумя способами так:

Сочетательный закон справедлив для любого числа слагаемых.

Так, в сумме четырёх слагаемых рядом стоящие слагаемые можно как угодно объединять в группы и заменять эти слагаемые их суммой:

Например, мы получим то же число 16, каким бы способом ни группировали рядом стоящие слагаемые:

Переместительным и сочетательным законами часто пользуются при устных вычислениях, располагая числа так, чтобы легче было их сложить в уме.

Поменяем местами два последних слагаемых, получим:

Сложить числа в этом порядке оказалось гораздо легче.

Обычно слагаемые в новом порядке не переписывают, а производят их перемещение в уме: переставив мысленно 67 и И, сразу складывают 89 и 11 и затем прибавляют 67.

Чтобы легче было сложить эти числа в уме, изменим порядок слагаемых так:

Пользуясь сочетательным законом, заключим два последних слагаемых в скобки:

Сложение чисел в скобках произвести легко, получим:

3. Переместительный закон умножения.

Произведение не изменяется от перемены порядка сомножителей:

где - любые числа.

Из арифметики известно, что переместительный закон верен для произведения любого числа сомножителей.

4. Сочетательный закон умножения.

Произведение нескольких сомножителей не изменится, если какую-нибудь группу рядом стоящих сомножителей заменить их произведением.

Для произведения трёх сомножителей имеем:

Например, произведение трёх сомножителей 5-3-4 можно вычислить так:

Для произведения четырёх сомножителей имеем:

Например, то же число 20 получится при любой группировке рядом стоящих сомножителей:

Применение переместительного и сочетательного законов умножения часто значительно облегчает вычисления.

Умножить 25 на 37 не очень легко. Переместим два последних сомножителя:

Теперь умножение легко выполнится в уме.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

22.10.15 Классная работа

Найдите длину отрезка АВ а b А В b а В А АВ= a + b АВ= b + a

11 + 16 = 27 (фруктов) 16 + 11 = 27 (фруктов) Изменится ли общее количество фруктов от перестановки слагаемых? Маша собрала 11 яблок и 16 груш. Сколько фруктов оказалось в корзинке у Маши?

Составьте буквенное выражение для записи словесного высказывания: « от перестановки слагаемых сумма не изменится » а + b = b + a Переместительный закон сложения

(5 + 7) + 3 = 15 (игрушек) Какой способ подсчета проще? Маша наряжала елку. Она повесила 5 елочных шаров, 7 шишек и 3 звёздочки. Сколько всего игрушек повесила маша? (7 + 3) + 5 =15 (игрушек)

Составьте буквенное выражение для записи словесного высказывания: « Чтобы к сумме двух слагаемых прибавить третье слагаемое, можно к первому слагаемому прибавить сумму второго и третьего слагаемых » (a + b)+с = a +(b+ с) Сочетательный закон сложения

Подсчитаем: 27+ 148+13 = (27+13) +148= 188 124 + 371 + 429 + 346 = = (124 + 346) + (371 + 429) = = 470 + 800 = 1270 Учимся считать быстро!

Справедливы для умножения те же законы, что и для сложения? a · b = b · a (a · b) · с = a · (b · с)

b=15 а =12 c=2 V = (a · b) · c = a · (b · c) V = (12 · 15) · 2= =12 · (15 · 2)=360 S = a · b= b · a S = 12 · 15 = =15 · 12 =180

a · b = b · a (a · b) · с = a · (b · с) Переместительный закон умножения Сочетательный закон умножения

Подсчитаем: 25 · 756 · 4 = (25 · 4) · 756= 75600 8 · (956 · 125) = = (8 · 125) · 956 = = 1000 · 956 = 956000 Учимся считать быстро!

ТЕМА УРОКА: С чем сегодня на уроке работаем? Сформулируйте тему урока.

212 (1 столбик), 214(а,б,в), 231, 230 В классе Домашнее задание 212 (2 столбик), 214(г,д,е), 253


По теме: методические разработки, презентации и конспекты

Разработка урока по математике в 5 классе "Законы арифметических действий" включает в себя текстовый файл и презентацию к уроку.На этом уроке повторяется переместительный и сочетательный законы, вводи...

Законы арифметических действий

Данная презентация полготовлена к уроку по математике в 5 классе на тему "Законы арифметических действий" (учебник И.И. Зубарева, А.Г. Мордкович)....

Урок изучения нового материала с использованием ЭОР....

Законы арифметических действий

Презентация создана для визуального сопровождения урока в 5 классе по теме "Арифметические действия с целыми числами". В ней представлена подборка задач как для общего, так и для самостоятельного реше...

разработка урока Математика 5 класс Законы арифметических действий

разработка урока Математика 5 класс Законы арифметических действий№ п/пСтруктура аннотацииСодержание аннотации1231ФИО Малясова Людмила Геннадьевна2Должность, преподаваемый предмет Учитель ма...